Trắc nghiệm Bài 2: Tính chất cơ bản của phân số Toán 6 Chân trời sáng tạo
Đề bài
Chọn câu sai. Với \(a;b;m \in Z;b;m \ne 0\) thì
-
A.
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\,\)
-
B.
\(\dfrac{a}{b} = \dfrac{{a + m}}{{b + m}}\,\)
-
C.
\(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\,\)
-
D.
\(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n }}\) với \(n\) là ước chung của \(a;b.\)
Phân số \(\dfrac{a}{b}\) là phân số tối giản khi ƯC\(\left( {a;b} \right)\) bằng
-
A.
$\left\{ {1; - 1} \right\}$
-
B.
\(\left\{ 2 \right\}\)
-
C.
\(\left\{ {1;2} \right\}\)
-
D.
\(\left\{ {1;2;3} \right\}\)
Tìm số \(a;b\) biết \(\dfrac{{24}}{{56}} = \dfrac{a}{7} = \dfrac{{ - 111}}{b}\)
-
A.
\(a = 3,b = - 259\)
-
B.
\(a = - 3,b = - 259\)
-
C.
\(a = 3,b = 259\)
-
D.
\(a = - 3,b = 259\)
Tìm \(x\) biết \(\dfrac{{2323}}{{3232}} = \dfrac{x}{{32}}.\)
-
A.
\(101\)
-
B.
\(32\)
-
C.
\( - 23\)
-
D.
\(23\)
Tìm \(x\) biết \(\dfrac{{ - 5}}{{ - 14}} = \dfrac{{20}}{{6 - 5x}}\)
-
A.
\(x=10\)
-
B.
\( x=- 10\)
-
C.
\(x=5\)
-
D.
\(x=6\)
Phân số \(\dfrac{{ - m}}{{ - n}};\,\,n,m \in \mathbb{Z};n \ne 0\) bằng phân số nào sau đây
-
A.
\(\dfrac{m}{n}\)
-
B.
\(\dfrac{n}{m}\)
-
C.
\(\dfrac{{ - n}}{m}\)
-
D.
\(\dfrac{m}{{ - n}}\)
Quy đồng mẫu số hai phân số \(\dfrac{2}{7};\dfrac{5}{{ - 8}}\)được hai phân số lần lượt là:
-
A.
\(\dfrac{{16}}{{56}};\dfrac{{ - 35}}{{56}}\)
-
B.
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{56}}\)
-
C.
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{ - 56}}\)
-
D.
\(\dfrac{{ - 16}}{{56}};\dfrac{{ - 35}}{{56}}\)
Mẫu số chung của các phân số \(\dfrac{2}{5};\dfrac{{23}}{{18}};\dfrac{5}{{75}}\) là
-
A.
$180$
-
B.
\(500\)
-
C.
\(750\)
-
D.
\(450\)
Mẫu chung nguyên dương nhỏ nhất của các phân số \(\dfrac{{19}}{{{3^2}.7.11}};\dfrac{{23}}{{{3^3}{{.7}^2}.19}}\) là:
-
A.
\({3^3}{.7^2}\)
-
B.
\({3^3}{.7^3}.11.19\)
-
C.
\({3^2}{.7^2}.11.19\)
-
D.
\({3^3}{.7^2}.11.19\)
Rút gọn phân số \(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}}\) về dạng phân số tối giản ta được phân số có tử số là
-
A.
\(\dfrac{4}{9}\)
-
B.
\(31\)
-
C.
\( - 1\)
-
D.
\(4\)
Phân số bằng phân số \(\dfrac{{301}}{{403}}\) mà có tử số và mẫu số đều là số dương, có ba chữ số là phân số nào?
-
A.
\(\dfrac{{151}}{{201}}\)
-
B.
\(\dfrac{{602}}{{806}}\)
-
C.
\(\dfrac{{301}}{{304}}\)
-
D.
\(\dfrac{{903}}{{1209}}\)
Lời giải và đáp án
Chọn câu sai. Với \(a;b;m \in Z;b;m \ne 0\) thì
-
A.
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\,\)
-
B.
\(\dfrac{a}{b} = \dfrac{{a + m}}{{b + m}}\,\)
-
C.
\(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\,\)
-
D.
\(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n }}\) với \(n\) là ước chung của \(a;b.\)
Đáp án : B
Áp dụng tính chất cơ bản của phân số
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\).
Dựa vào các tính chất cơ bản của phân số:
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\) và \(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\) thì các đáp án A, C, D đều đúng.
Đáp án B sai.
Phân số \(\dfrac{a}{b}\) là phân số tối giản khi ƯC\(\left( {a;b} \right)\) bằng
-
A.
$\left\{ {1; - 1} \right\}$
-
B.
\(\left\{ 2 \right\}\)
-
C.
\(\left\{ {1;2} \right\}\)
-
D.
\(\left\{ {1;2;3} \right\}\)
Đáp án : A
Phân số tối giản (hay phân số không rút gọn được nữa) là phân số mà cả tử và mẫu chỉ có ước chung là $1$ và $ - 1.$
Tìm số \(a;b\) biết \(\dfrac{{24}}{{56}} = \dfrac{a}{7} = \dfrac{{ - 111}}{b}\)
-
A.
\(a = 3,b = - 259\)
-
B.
\(a = - 3,b = - 259\)
-
C.
\(a = 3,b = 259\)
-
D.
\(a = - 3,b = 259\)
Đáp án : A
Sử dụng tính chất của phân số:
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\)
Ta có:
\(\dfrac{{24}}{{56}} = \dfrac{{24:8}}{{56:8}} = \dfrac{3}{7} = \dfrac{a}{7} \Rightarrow a = 3\)
\(\dfrac{3}{7} = \dfrac{{3.\left( { - 37} \right)}}{{7.\left( { - 37} \right)}} = \dfrac{{ - 111}}{{ - 259}} = \dfrac{{ - 111}}{b} \Rightarrow b = - 259\)
Vậy \(a = 3,b = - 259\)
Tìm \(x\) biết \(\dfrac{{2323}}{{3232}} = \dfrac{x}{{32}}.\)
-
A.
\(101\)
-
B.
\(32\)
-
C.
\( - 23\)
-
D.
\(23\)
Đáp án : D
Rút gọn phân số đã cho: Chia cả tử và mẫu của phân số $\dfrac{a}{b}$ cho ƯCLN của $\left| a \right|$ và $\left| b \right|$ để rút gọn phân số tối giản.
Ta có: \(\dfrac{{2323}}{{3232}} = \dfrac{{2323:101}}{{3232:101}}\)\( = \dfrac{{23}}{{32}} = \dfrac{x}{{32}} \Rightarrow x = 23\)
Tìm \(x\) biết \(\dfrac{{ - 5}}{{ - 14}} = \dfrac{{20}}{{6 - 5x}}\)
-
A.
\(x=10\)
-
B.
\( x=- 10\)
-
C.
\(x=5\)
-
D.
\(x=6\)
Đáp án : B
Áp dụng tính chất: Nhân cả tử và mẫu của phân số với một số nguyên khác \( \pm 1\) ta được phân số mới bằng phân số đã cho.
Biến đổi để hai vế là hai phân số có cùng tử số, từ đó cho hai mẫu số bằng nhau ta tìm được \(x.\)
Ta có:
\(\dfrac{{ - 5}}{{ - 14}} = \dfrac{{\left( { - 5} \right).\left( { - 4} \right)}}{{\left( { - 14} \right).\left( { - 4} \right)}} = \dfrac{{20}}{{56}} = \dfrac{{20}}{{6 - 5x}}\)
\(\begin{array}{l} \Rightarrow 56 = 6 - 5x\\56 - 6 = - 5x\\50 = - 5x\\x = 50:\left( { - 5} \right)\\x = - 10\end{array}\)
Phân số \(\dfrac{{ - m}}{{ - n}};\,\,n,m \in \mathbb{Z};n \ne 0\) bằng phân số nào sau đây
-
A.
\(\dfrac{m}{n}\)
-
B.
\(\dfrac{n}{m}\)
-
C.
\(\dfrac{{ - n}}{m}\)
-
D.
\(\dfrac{m}{{ - n}}\)
Đáp án : A
Ta có: \(\dfrac{{ - m}}{{ - n}} = \dfrac{m}{n}\)
Quy đồng mẫu số hai phân số \(\dfrac{2}{7};\dfrac{5}{{ - 8}}\)được hai phân số lần lượt là:
-
A.
\(\dfrac{{16}}{{56}};\dfrac{{ - 35}}{{56}}\)
-
B.
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{56}}\)
-
C.
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{ - 56}}\)
-
D.
\(\dfrac{{ - 16}}{{56}};\dfrac{{ - 35}}{{56}}\)
Đáp án : A
Đưa các phân số về có mẫu dương hết rồi quy đồng mẫu số các phân số.
+) Tìm $MSC$ (thường là $BCNN$ của các mẫu).
+) Tìm thừa số phụ $ = {\rm{ }}MSC{\rm{ }}:{\rm{ }}MS$
+) Nhân cả tử và mẫu với thừa số phụ tương ứng
Ta quy đồng \(\dfrac{2}{7}\) và \(\dfrac{{ - 5}}{8}\) (\(MSC:56\))
\(\dfrac{2}{7} = \dfrac{{2.8}}{{7.8}} = \dfrac{{16}}{{56}};\) \(\dfrac{{ - 5}}{8} = \dfrac{{ - 5.7}}{{8.7}} = \dfrac{{ - 35}}{{56}}\)
Mẫu số chung của các phân số \(\dfrac{2}{5};\dfrac{{23}}{{18}};\dfrac{5}{{75}}\) là
-
A.
$180$
-
B.
\(500\)
-
C.
\(750\)
-
D.
\(450\)
Đáp án : D
- Phân tích các mẫu số thành tích các thừa số nguyên tố.
- \(MSC\) được chọn thường là \(BCNN\) của các mẫu số.
Ta có:
\(\begin{array}{l}5 = 5.1\\18 = {2.3^2}\\75 = {3.5^2}\end{array}\)
\( \Rightarrow BCNN\left( {5;18;75} \right) = {2.3^2}{.5^2} = 450\)
Vậy ta có thể chọn một mẫu chung là \(450\)
Mẫu chung nguyên dương nhỏ nhất của các phân số \(\dfrac{{19}}{{{3^2}.7.11}};\dfrac{{23}}{{{3^3}{{.7}^2}.19}}\) là:
-
A.
\({3^3}{.7^2}\)
-
B.
\({3^3}{.7^3}.11.19\)
-
C.
\({3^2}{.7^2}.11.19\)
-
D.
\({3^3}{.7^2}.11.19\)
Đáp án : D
Mẫu chung nguyên dương nhỏ nhất của các phân số là \(BCNN\) của các mẫu.
\(BCNN\) hay mẫu chung nguyên dương nhỏ nhất của hai mẫu đã cho là \({3^3}{.7^2}.11.19\)
Rút gọn phân số \(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}}\) về dạng phân số tối giản ta được phân số có tử số là
-
A.
\(\dfrac{4}{9}\)
-
B.
\(31\)
-
C.
\( - 1\)
-
D.
\(4\)
Đáp án : D
- Tính tử và mẫu của phân số đã cho và rút gọn phân số đó.
Ta có:
\(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}} = \dfrac{{ - 6 + 30}}{{54}}\) \( = \dfrac{{24}}{{54}} = \dfrac{{24:6}}{{54:6}} = \dfrac{4}{9}\)
Vậy tử số của phân số cần tìm là \(4\)
Phân số bằng phân số \(\dfrac{{301}}{{403}}\) mà có tử số và mẫu số đều là số dương, có ba chữ số là phân số nào?
-
A.
\(\dfrac{{151}}{{201}}\)
-
B.
\(\dfrac{{602}}{{806}}\)
-
C.
\(\dfrac{{301}}{{304}}\)
-
D.
\(\dfrac{{903}}{{1209}}\)
Đáp án : B
Ta nhân cả tử và mẫu của phân số đã cho với một số tự nhiên thích hợp \(\left( { \ne 1} \right)\) để thu được phân số cần tìm.
Ta có:
\( + )\dfrac{{301}}{{403}} = \dfrac{{301.2}}{{403.2}} = \dfrac{{602}}{{806}}\left( {TM} \right)\)
\( + )\dfrac{{301}}{{403}} = \dfrac{{301.3}}{{403.3}} = \dfrac{{903}}{{1209}}\left( L \right)\)
Do đó ở các trường hợp nhân cả tử và mẫu với một số tự nhiên lớn hơn \(3\) ta cũng đều loại được.
Ngoài ra phân số \(\dfrac{{301}}{{403}}\) tối giản nên không thể rút gọn được.
Vậy phân số cần tìm là \(\dfrac{{602}}{{806}}\)
Luyện tập và củng cố kiến thức Các dạng toán về tính chất cơ bản của phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3: So sánh phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4: Phép cộng và phép trừ phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép cộng và phép trừ phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 5: Phép nhân và phép chia phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép nhân và phép chia phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 6: Giá trị phân số của một số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 7: Hỗn số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài tập ôn tập chương 5: Phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phân số với tử số và mẫu số là số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 1: Phân số với tử số và mẫu số là số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài tập ôn tập chương 9: Một số yếu tố thống kê Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài 2: Xác suất thực nghiệm Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài 1: Phép thử nghiệm – Sự kiện Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài tập ôn tập chương 8: Hình học phẳng. Các hình hình học cơ bản Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài 7: Số đo góc. Các góc đặc biệt Toán 6 Chân trời sáng tạo