Trắc nghiệm Các dạng toán về tính chất cơ bản của phân số Toán 6 Chân trời sáng tạo
Đề bài
Phân số nào dưới đây là phân số tối giản?
-
A.
\(\dfrac{{ - 2}}{4}\)
-
B.
\(\dfrac{{ - 15}}{{ - 96}}\)
-
C.
\(\dfrac{{13}}{{27}}\)
-
D.
\(\dfrac{{ - 29}}{{58}}\)
Nhân cả tử số và mẫu số của phân số \(\dfrac{{14}}{{23}}\) với số nào để được phân số \(\dfrac{{168}}{{276}}?\)
-
A.
\(14\)
-
B.
\(23\)
-
C.
\(12\)
-
D.
\(22\)
Rút gọn phân số \(\dfrac{{600}}{{800}}\) về dạng phân số tối giản ta được:
-
A.
\(\dfrac{1}{2}\)
-
B.
\(\dfrac{6}{8}\)
-
C.
\(\dfrac{3}{4}\)
-
D.
\(\dfrac{{ - 3}}{4}\)
Hãy chọn phân số không bằng phân số \(\dfrac{{ - 8}}{9}\) trong các phân số dưới đây?
-
A.
\(\dfrac{{16}}{{ - 18}}\)
-
B.
\(\dfrac{{ - 72}}{{81}}\)
-
C.
\(\dfrac{{ - 24}}{{ - 27}}\)
-
D.
\(\dfrac{{ - 88}}{{99}}\)
Rút gọn phân số \(\dfrac{{4.8}}{{64.( - 7)}}\) ta được phân số tối giản là:
-
A.
\(\dfrac{{ - 1}}{7}\)
-
B.
\(\dfrac{{ - 1}}{{14}}\)
-
C.
\(\dfrac{4}{{ - 56}}\)
-
D.
\(\dfrac{{ - 1}}{{70}}\)
Rút gọn biểu thức \(A = \dfrac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\) ta được
-
A.
\(\dfrac{{ - 13}}{{25}}\)
-
B.
\(\dfrac{{ - 18}}{{25}}\)
-
C.
\(\dfrac{{ - 6}}{{25}}\)
-
D.
\(\dfrac{{ - 39}}{{50}}\)
Phân số nào sau đây là kết quả của biểu thức \(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}}\) sau khi rút gọn đến tối giản?
-
A.
\(\dfrac{{ - 13}}{{22}}\)
-
B.
\(\dfrac{{13}}{{22}}\)
-
C.
\(\dfrac{{ - 13}}{{18}}\)
-
D.
\(\dfrac{{ - 117}}{{198}}\)
Biểu thức \(\dfrac{{{5^{12}}{{.3}^9} - {5^{10}}{{.3}^{11}}}}{{{5^{10}}{{.3}^{10}}}}\) sau khi đã rút gọn đến tối giản có mẫu số dương là:
-
A.
\(16\)
-
B.
\(3\)
-
C.
\(\dfrac{{16}}{5}\)
-
D.
\(\dfrac{{16}}{3}\)
Sau khi rút gọn biểu thức \(\dfrac{{{5^{11}}{{.7}^{12}} + {5^{11}}{{.7}^{11}}}}{{{5^{12}}{{.7}^{12}} + {{9.5}^{11}}{{.7}^{11}}}}\) ta được phân số \(\dfrac{a}{b}.\) Tính tổng \(a + b.\)
-
A.
\(26\)
-
B.
\(13\)
-
C.
\(52\)
-
D.
\(8\)
Rút gọn phân số \(\dfrac{{{9^{14}}{{.25}^5}{{.8}^7}}}{{{{18}^{12}}{{.625}^3}{{.24}^3}}}\) ta được
-
A.
\(\dfrac{9}{5}\)
-
B.
\(\dfrac{9}{{25}}\)
-
C.
\(\dfrac{3}{{25}}\)
-
D.
\(\dfrac{3}{5}\)
Cho \(A = \dfrac{{1.3.5.7...39}}{{21.22.23...40}}\) và \(B = \dfrac{{1.3.5...\left( {2n - 1} \right)}}{{\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)...2n}}\,\left( {n \in {N^*}} \right)\) . Chọn câu đúng.
-
A.
\(A = \dfrac{1}{{{2^{20}}}};B = \dfrac{1}{{{2^n}}}\)
-
B.
\(A = \dfrac{1}{{{2^{25}}}},B = \dfrac{1}{{{2^{n + 1}}}}\)
-
C.
\(A = \dfrac{1}{{{2^{20}}}},B = \dfrac{1}{{{2^{2n}}}}\)
-
D.
\(A = \dfrac{1}{{{2^{21}}}},B = \dfrac{1}{{{2^{n + 1}}}}\)
Tìm phân số bằng với phân số \(\dfrac{{200}}{{520}}\) mà có tổng của tử và mẫu bằng \(306.\)
-
A.
\(\dfrac{{84}}{{222}}\)
-
B.
\(\dfrac{{200}}{{520}}\)
-
C.
\(\dfrac{{85}}{{221}}\)
-
D.
\(\dfrac{{100}}{{260}}\)
Viết dạng tổng quát của các phân số bằng với phân số \(\dfrac{{ - 12}}{{40}}\)
-
A.
\(\dfrac{{ - 3k}}{{10k}},k \in Z\)
-
B.
\(\dfrac{{ - 3k}}{{10}},k \in Z,k \ne 0\)
-
C.
\(\dfrac{{ - 3k}}{{10k}},k \in Z,k \ne 0\)
-
D.
\(\dfrac{{ - 3}}{{10}}\)
Tìm phân số tối giản \(\dfrac{a}{b}\) biết rằng lấy tử cộng với \(6,\) lấy mẫu cộng với \(14\) thì ta được phân số bằng \(\dfrac{3}{7}.\)
-
A.
\(\dfrac{4}{5}\)
-
B.
\(\dfrac{{ 7}}{3}\)
-
C.
\(\dfrac{3}{7}\)
-
D.
\(\dfrac{{ - 3}}{7}\)
Cho các phân số \(\dfrac{6}{{n + 8}}; \dfrac{7}{{n + 9}}; \dfrac{8}{{n + 10}};...;\dfrac{{35}}{{n + 37}}.\) Tìm số tự nhiên \(n\) nhỏ nhất để các phân số trên tối giản.
-
A.
\(35\)
-
B.
\(34\)
-
C.
\(37\)
-
D.
\(36\)
Rút gọn phân số \(\dfrac{{ - 12a}}{{24}}\) , \(a \in \mathbb{Z}\) ta được:
-
A.
\(\dfrac{a}{2}\)
-
B.
\(\dfrac{1}{2}\)
-
C.
\(\dfrac{{ - 1}}{2}\)
-
D.
\(\dfrac{{ - a}}{2}\)
Qui đồng mẫu số các phân số \(\dfrac{{11}}{{12}};\dfrac{{15}}{{16}};\dfrac{{23}}{{20}}\) ta được các phân số lần lượt là
-
A.
\(\dfrac{{220}}{{240}};\dfrac{{225}}{{240}};\dfrac{{276}}{{240}}\)
-
B.
\(\dfrac{{225}}{{240}};\dfrac{{220}}{{240}};\dfrac{{276}}{{240}}\)
-
C.
\(\dfrac{{225}}{{240}};\dfrac{{276}}{{240}};\dfrac{{220}}{{240}}\)
-
D.
\(\dfrac{{220}}{{240}};\dfrac{{276}}{{240}};\dfrac{{225}}{{240}}\)
Lời giải và đáp án
Phân số nào dưới đây là phân số tối giản?
-
A.
\(\dfrac{{ - 2}}{4}\)
-
B.
\(\dfrac{{ - 15}}{{ - 96}}\)
-
C.
\(\dfrac{{13}}{{27}}\)
-
D.
\(\dfrac{{ - 29}}{{58}}\)
Đáp án : C
Định nghĩa phân số tối giản:
Phân số tối giản (hay phân số không rút gọn được nữa) là phân số mà cả tử và mẫu chỉ có ước chung là $1$ và $ - 1.$
Do đó ta chỉ cần tìm \(ƯCLN\) của giá trị tuyệt đối của tử và mẫu phân số, nếu \(ƯCLN\) đó là \(1\) thì phân số đã cho tối giản.
Đáp án A: \(ƯCLN\left( {2;4} \right) = 2 \ne 1\) nên loại.
Đáp án B: \(ƯCLN\left( {15;96} \right) = 3 \ne 1\) nên loại.
Đáp án C: \(ƯCLN\left( {13;27} \right) = 1\) nên C đúng.
Đáp án D: \(ƯCLN\left( {29;58} \right) = 29 \ne 1\) nên D sai.
Nhân cả tử số và mẫu số của phân số \(\dfrac{{14}}{{23}}\) với số nào để được phân số \(\dfrac{{168}}{{276}}?\)
-
A.
\(14\)
-
B.
\(23\)
-
C.
\(12\)
-
D.
\(22\)
Đáp án : C
Lấy tử số và mẫu số của phân số sau lần lượt chia cho tử số và mẫu số của phân số trước, nếu ra cùng một số thì đó là đáp án, nếu ra hai số khác nhau thì ta kết luận không có số cần tìm hoặc hai phân số đã cho không bằng nhau.
Ta có: \(168:14 = 12\) và \(276:23 = 12\) nên số cần tìm là \(12\)
Rút gọn phân số \(\dfrac{{600}}{{800}}\) về dạng phân số tối giản ta được:
-
A.
\(\dfrac{1}{2}\)
-
B.
\(\dfrac{6}{8}\)
-
C.
\(\dfrac{3}{4}\)
-
D.
\(\dfrac{{ - 3}}{4}\)
Đáp án : C
- Chia cả tử và mẫu của phân số $\dfrac{a}{b}$ cho ƯCLN của $\left| a \right|$ và $\left| b \right|$ để rút gọn phân số tối giản.
Ta có: \(ƯCLN\left( {600,800} \right) = 200\) nên:
\(\dfrac{{600}}{{800}} = \dfrac{{600:200}}{{800:200}} = \dfrac{3}{4}\)
Hãy chọn phân số không bằng phân số \(\dfrac{{ - 8}}{9}\) trong các phân số dưới đây?
-
A.
\(\dfrac{{16}}{{ - 18}}\)
-
B.
\(\dfrac{{ - 72}}{{81}}\)
-
C.
\(\dfrac{{ - 24}}{{ - 27}}\)
-
D.
\(\dfrac{{ - 88}}{{99}}\)
Đáp án : C
Rút gọn mỗi phân số ở từng đáp án và kiểm tra xem có bằng phân số \(\dfrac{{ - 8}}{9}\) hay không rồi kết luận.
Đáp án A: \(\dfrac{{16}}{{ - 18}} = \dfrac{{ - 16}}{{18}} = \dfrac{{ - 16:2}}{{18:2}} = \dfrac{{ - 8}}{9}\) nên A đúng.
Đáp án B: \(\dfrac{{ - 72}}{{81}} = \dfrac{{ - 72:9}}{{81:9}} = \dfrac{{ - 8}}{9}\) nên B đúng.
Đáp án C: \(\dfrac{{ - 24}}{{ - 27}} = \dfrac{{24}}{{27}} = \dfrac{{24:3}}{{27:3}} = \dfrac{8}{9} \ne \dfrac{{ - 8}}{9}\) nên C sai.
Đáp án D: \(\dfrac{{ - 88}}{{99}} = \dfrac{{ - 88:11}}{{99:11}} = \dfrac{{ - 8}}{9}\) nên D đúng.
Rút gọn phân số \(\dfrac{{4.8}}{{64.( - 7)}}\) ta được phân số tối giản là:
-
A.
\(\dfrac{{ - 1}}{7}\)
-
B.
\(\dfrac{{ - 1}}{{14}}\)
-
C.
\(\dfrac{4}{{ - 56}}\)
-
D.
\(\dfrac{{ - 1}}{{70}}\)
Đáp án : B
Tách các thừa số ở tử và mẫu thành tích các thừa số nhỏ hơn rồi chia cả tử và mẫu cho các thừa số chung.
Ta có:
\(\dfrac{{4.8}}{{64.\left( { - 7} \right)}} = \dfrac{{4.8}}{{2.4.8.\left( { - 7} \right)}} = \dfrac{1}{{2.\left( { - 7} \right)}} = \dfrac{{ - 1}}{{14}}\)
Rút gọn biểu thức \(A = \dfrac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\) ta được
-
A.
\(\dfrac{{ - 13}}{{25}}\)
-
B.
\(\dfrac{{ - 18}}{{25}}\)
-
C.
\(\dfrac{{ - 6}}{{25}}\)
-
D.
\(\dfrac{{ - 39}}{{50}}\)
Đáp án : D
- Phân tích tử của \(A\) thành các nhân tử.
- Rút gọn biểu thức bằng cách chia cả tử và mẫu của \(A\) cho nhân tử chung.
Ta có:
\(A = \dfrac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\)\( = \dfrac{{\left[ {3.\left( { - 4} \right) - 1} \right].60}}{{50.20}}\)\( = \dfrac{{ - 13.60}}{{50.20}} = \dfrac{{ - 13.3}}{{50}} = \dfrac{{ - 39}}{{50}}\)
Phân số nào sau đây là kết quả của biểu thức \(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}}\) sau khi rút gọn đến tối giản?
-
A.
\(\dfrac{{ - 13}}{{22}}\)
-
B.
\(\dfrac{{13}}{{22}}\)
-
C.
\(\dfrac{{ - 13}}{{18}}\)
-
D.
\(\dfrac{{ - 117}}{{198}}\)
Đáp án : A
- Phân tích các thừa số trong tích ở cả tử và mẫu thành tích các thừa số nguyên tố.
- Chia cả tử và mẫu của biểu thức cho từng lũy thừa chung ở tử và mẫu mà có số mũ nhỏ hơn.
\(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}} = \dfrac{{{{2.3}^2}{{.2}^2}.13}}{{2.11.\left( { - {2^3}{{.3}^2}} \right)}}\)\( = \dfrac{{{2^3}{{.3}^2}.13}}{{ - {2^4}{{.3}^2}.11}} = \dfrac{{13}}{{ - 2.11}} = \dfrac{{ - 13}}{{22}}\)
Biểu thức \(\dfrac{{{5^{12}}{{.3}^9} - {5^{10}}{{.3}^{11}}}}{{{5^{10}}{{.3}^{10}}}}\) sau khi đã rút gọn đến tối giản có mẫu số dương là:
-
A.
\(16\)
-
B.
\(3\)
-
C.
\(\dfrac{{16}}{5}\)
-
D.
\(\dfrac{{16}}{3}\)
Đáp án : B
Dùng tính chất cơ bản của phân số: \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\,\,(n \in ƯC(a,b),\,n \ne 1,n \ne - 1)\).
\(\,\dfrac{{{5^{12}}{{.3}^9} - {5^{10}}{{.3}^{11}}}}{{{5^{10}}{{.3}^{10}}}} = \dfrac{{{5^{10}}{{.3}^9}.\left( {{5^2} - {3^2}} \right)}}{{{5^{10}}{{.3}^{10}}}} = \dfrac{{{5^{10}}{{.3}^9}.16}}{{{5^{10}}{{.3}^{10}}}} = \dfrac{{16}}{3}.\)
Vậy mẫu số của phân số đó là \(3\)
Sau khi rút gọn biểu thức \(\dfrac{{{5^{11}}{{.7}^{12}} + {5^{11}}{{.7}^{11}}}}{{{5^{12}}{{.7}^{12}} + {{9.5}^{11}}{{.7}^{11}}}}\) ta được phân số \(\dfrac{a}{b}.\) Tính tổng \(a + b.\)
-
A.
\(26\)
-
B.
\(13\)
-
C.
\(52\)
-
D.
\(8\)
Đáp án : B
Dùng tính chất cơ bản của phân số: \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\,\,(n \in ƯC(a,b),\,n \ne 1,n \ne - 1)\).
\(\dfrac{{{5^{11}}{{.7}^{12}} + {5^{11}}{{.7}^{11}}}}{{{5^{12}}{{.7}^{12}} + {{9.5}^{11}}{{.7}^{11}}}} = \dfrac{{{5^{11}}{{.7}^{11}}(7 + 1)}}{{{5^{11}}{{.7}^{11}}(5.7 + 9)}} = \dfrac{8}{{44}} = \dfrac{2}{{11}}.\)
Do đó \(a = 2,b = 11\) nên \(a + b = 13\)
Rút gọn phân số \(\dfrac{{{9^{14}}{{.25}^5}{{.8}^7}}}{{{{18}^{12}}{{.625}^3}{{.24}^3}}}\) ta được
-
A.
\(\dfrac{9}{5}\)
-
B.
\(\dfrac{9}{{25}}\)
-
C.
\(\dfrac{3}{{25}}\)
-
D.
\(\dfrac{3}{5}\)
Đáp án : C
- Phân tích các thừa số ở cả tử và mẫu của biểu thức thành tích các thừa số nguyên tố.
- Chia cả tử và mẫu cho thừa số chung để rút gọn.
\(\dfrac{{{9^{14}}{{.25}^5}{{.8}^7}}}{{{{18}^{12}}{{.625}^3}{{.24}^3}}}\)\( = \dfrac{{{{\left( {{3^2}} \right)}^{14}}.{{\left( {{5^2}} \right)}^5}.{{\left( {{2^3}} \right)}^7}}}{{{{\left( {{{2.3}^2}} \right)}^{12}}.{{\left( {{5^4}} \right)}^3}.{{\left( {{2^3}.3} \right)}^3}}}\)\( = \dfrac{{{3^{28}}{{.5}^{10}}{{.2}^{21}}}}{{{2^{12}}{{.3}^{24}}{{.5}^{12}}{{.2}^9}{{.3}^3}}}\)\( = \dfrac{{{2^{21}}{{.3}^{28}}{{.5}^{10}}}}{{{2^{21}}{{.3}^{27}}{{.5}^{12}}}} = \dfrac{3}{{{5^2}}} = \dfrac{3}{{25}}\)
Cho \(A = \dfrac{{1.3.5.7...39}}{{21.22.23...40}}\) và \(B = \dfrac{{1.3.5...\left( {2n - 1} \right)}}{{\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)...2n}}\,\left( {n \in {N^*}} \right)\) . Chọn câu đúng.
-
A.
\(A = \dfrac{1}{{{2^{20}}}};B = \dfrac{1}{{{2^n}}}\)
-
B.
\(A = \dfrac{1}{{{2^{25}}}},B = \dfrac{1}{{{2^{n + 1}}}}\)
-
C.
\(A = \dfrac{1}{{{2^{20}}}},B = \dfrac{1}{{{2^{2n}}}}\)
-
D.
\(A = \dfrac{1}{{{2^{21}}}},B = \dfrac{1}{{{2^{n + 1}}}}\)
Đáp án : A
Quan sát \(A\) và \(B\) ta thấy tử số của biểu thức đều thiếu thành phần tích các số chẵn \(2.4.6.....2n\) nên ta có thể thử:
- Nhân cả tử và mẫu của \(A\) với \(2.4.6.....40\)
- Nhân cả tử và mẫu của \(B\) với \(2.4.6.....2n\)
Sau đó rút gọn các biểu thức ta được kết quả cần tìm.
+ Nhân cả tử và mẫu của \(A\) với \(2.4.6.....40\) ta được:
\(A = \dfrac{{\left( {1.3.....39} \right).\left( {2.4.....40} \right)}}{{\left( {2.4.6.....40} \right).\left( {21.22.....40} \right)}}\)\( = \dfrac{{1.2.3.....39.40}}{{\left( {2.1} \right).\left( {2.2} \right).\left( {2.3} \right).....\left( {2.20} \right).\left( {21.22.....40} \right)}}\)
\( = \dfrac{{1.2.3.....39.40}}{{{2^{20}}.\left( {1.2.3.....20.21.22.....40} \right)}}\)\( = \dfrac{1}{{{2^{20}}}}\)
+ Nhân cả tử và mẫu của \(B\) với \(2.4.6.....2n\) ta được:
\(B = \dfrac{{\left( {1.3.....\left( {2n - 1} \right)} \right).\left( {2.4.....2n} \right)}}{{\left( {2.4.6.....2n} \right).\left( {\left( {n + 1} \right).\left( {n + 2} \right).....2n} \right)}}\)\( = \dfrac{{1.2.3.....\left( {2n - 1} \right).2n}}{{\left( {2.1} \right).\left( {2.2} \right).\left( {2.3} \right).....\left( {2.n} \right).\left( {\left( {n + 1} \right).\left( {n + 2} \right).....2n} \right)}}\)
\( = \dfrac{{1.2.3.....\left( {2n - 1} \right).2n}}{{{2^n}.\left( {1.2.3.....n.\left( {n + 1} \right).\left( {n + 2} \right).....2n} \right)}}\)\( = \dfrac{1}{{{2^n}}}\)
Vậy \(A = \dfrac{1}{{{2^{20}}}},B = \dfrac{1}{{{2^n}}}\)
Tìm phân số bằng với phân số \(\dfrac{{200}}{{520}}\) mà có tổng của tử và mẫu bằng \(306.\)
-
A.
\(\dfrac{{84}}{{222}}\)
-
B.
\(\dfrac{{200}}{{520}}\)
-
C.
\(\dfrac{{85}}{{221}}\)
-
D.
\(\dfrac{{100}}{{260}}\)
Đáp án : C
- Tìm dạng tổng quát của phân số đã cho có dạng \(\dfrac{{a.k}}{{b.k}}\left( {k \in Z,k \ne 0} \right)\)
- Viết mối quan hệ của \(ak\) với \(bk\) dựa vào điều kiện bài cho rồi tìm \(k\)
Ta có: \(\dfrac{{200}}{{520}} = \dfrac{5}{{13}}\) nên có dạng tổng quát là \(\dfrac{{5k}}{{13k}}\left( {k \in Z,k \ne 0} \right)\)
Do tổng và tử và mẫu của phân số cần tìm bằng \(306\) nên:
\(\begin{array}{l}5k + 13k = 306\\18k = 306\\k = 306:18\\k = 17\end{array}\)
Vậy phân số cần tìm là \(\dfrac{{5.17}}{{13.17}} = \dfrac{{85}}{{221}}\)
Viết dạng tổng quát của các phân số bằng với phân số \(\dfrac{{ - 12}}{{40}}\)
-
A.
\(\dfrac{{ - 3k}}{{10k}},k \in Z\)
-
B.
\(\dfrac{{ - 3k}}{{10}},k \in Z,k \ne 0\)
-
C.
\(\dfrac{{ - 3k}}{{10k}},k \in Z,k \ne 0\)
-
D.
\(\dfrac{{ - 3}}{{10}}\)
Đáp án : C
- Rút gọn phân số đã cho đến tối giản, chẳng hạn được phân số tối giản $\dfrac{m}{n};$
- Dạng tổng quát của các phân số phải tìm là $\dfrac{{m.k}}{{n.k}}$ (\(k\) $ \in $ $\mathbb{Z}$, \(k \ne 0)\)
- Rút gọn phân số: \(\dfrac{{ - 12}}{{40}} = \dfrac{{ - 12:4}}{{40:4}} = \dfrac{{ - 3}}{{10}}\)
- Dạng tổng quát của phân số đã cho là: \(\dfrac{{ - 3k}}{{10k}}\) với \(k \in Z,k \ne 0\)
Tìm phân số tối giản \(\dfrac{a}{b}\) biết rằng lấy tử cộng với \(6,\) lấy mẫu cộng với \(14\) thì ta được phân số bằng \(\dfrac{3}{7}.\)
-
A.
\(\dfrac{4}{5}\)
-
B.
\(\dfrac{{ 7}}{3}\)
-
C.
\(\dfrac{3}{7}\)
-
D.
\(\dfrac{{ - 3}}{7}\)
Đáp án : C
Dựa vào điều kiện của để bài, đưa về dạng 2 phân số bằng nhau để tính toán.
Ta có:
\(\begin{array}{l}\dfrac{{a + 6}}{{b + 14}} = \dfrac{3}{7}\\7.(a + 6) = 3.(b + 14)\\7{\rm{a}} + 42 = 3b + 42\\7{\rm{a}} = 3b\\\dfrac{a}{b} = \dfrac{3}{7}\end{array}\)
Cho các phân số \(\dfrac{6}{{n + 8}}; \dfrac{7}{{n + 9}}; \dfrac{8}{{n + 10}};...;\dfrac{{35}}{{n + 37}}.\) Tìm số tự nhiên \(n\) nhỏ nhất để các phân số trên tối giản.
-
A.
\(35\)
-
B.
\(34\)
-
C.
\(37\)
-
D.
\(36\)
Đáp án : A
Đưa các phân số về dạng \(\dfrac{a}{{a + (n + 2)}}\) rồi lập luận
Các phân số đã cho đều có dạng \(\dfrac{a}{{a + (n + 2)}}\)
Và tối giản nếu \(a\) và \(n + 2\) nguyên tố cùng nhau
Vì: \(\left[ {a + (n + 2)} \right] - a = n + 2\) với
\(a = 6;7;8;.....;34;35\)
Do đó \(n + 2\) nguyên tố cùng nhau với các số \(6;7;8;.....;34;35\)
Số tự nhiên \(n + 2\) nhỏ nhất thỏa mãn tính chất này là \(37\)
Ta có \(n + 2 = 37\) nên \(n = 37 - 2 = 35\)
Vậy số tự nhiên nhỏ nhất cần tìm là \(35\)
Rút gọn phân số \(\dfrac{{ - 12a}}{{24}}\) , \(a \in \mathbb{Z}\) ta được:
-
A.
\(\dfrac{a}{2}\)
-
B.
\(\dfrac{1}{2}\)
-
C.
\(\dfrac{{ - 1}}{2}\)
-
D.
\(\dfrac{{ - a}}{2}\)
Đáp án : D
Ta có: \(\dfrac{{ - 12a}}{{24}} = \dfrac{{\left( { - 1} \right).12.a}}{{12.2}} = \dfrac{{\left( { - 1} \right).a}}{2} = \dfrac{{ - a}}{2}\).
Qui đồng mẫu số các phân số \(\dfrac{{11}}{{12}};\dfrac{{15}}{{16}};\dfrac{{23}}{{20}}\) ta được các phân số lần lượt là
-
A.
\(\dfrac{{220}}{{240}};\dfrac{{225}}{{240}};\dfrac{{276}}{{240}}\)
-
B.
\(\dfrac{{225}}{{240}};\dfrac{{220}}{{240}};\dfrac{{276}}{{240}}\)
-
C.
\(\dfrac{{225}}{{240}};\dfrac{{276}}{{240}};\dfrac{{220}}{{240}}\)
-
D.
\(\dfrac{{220}}{{240}};\dfrac{{276}}{{240}};\dfrac{{225}}{{240}}\)
Đáp án : A
Bước 1: Tìm mẫu số chung $\left( {MSC} \right)$ của ba phân số trên: Có thể chọn $MSC = BCNN\left( {16,12,20} \right)$
Bước 2: Tìm thừa số phụ tương ứng bằng cách lấy $MSC$ chia mẫu số riêng của mỗi phân số
Bước 3: Quy đồng mẫu bằng cách nhân cả tử số mà mẫu số của mỗi phân số với thừa số phụ tương ứng
Ta có: \(12 = {2^2}.3;16 = {2^4};20 = {2^2}.5\)
Do đó \(MSC = {2^4}.3.5 = 240\)
\(\dfrac{{11}}{{12}} = \dfrac{{11.20}}{{12.20}} = \dfrac{{220}}{{240}};\)\(\dfrac{{15}}{{16}} = \dfrac{{15.15}}{{16.15}} = \dfrac{{225}}{{240}};\)\(\dfrac{{23}}{{20}} = \dfrac{{23.12}}{{20.12}} = \dfrac{{276}}{{240}}\)
Vậy các phân số sau khi quy đồng lần lượt là: \(\dfrac{{220}}{{240}};\dfrac{{225}}{{240}};\dfrac{{276}}{{240}}\)
Luyện tập và củng cố kiến thức Bài 3: So sánh phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4: Phép cộng và phép trừ phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép cộng và phép trừ phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 5: Phép nhân và phép chia phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép nhân và phép chia phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 6: Giá trị phân số của một số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 7: Hỗn số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài tập ôn tập chương 5: Phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 2: Tính chất cơ bản của phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phân số với tử số và mẫu số là số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 1: Phân số với tử số và mẫu số là số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài tập ôn tập chương 9: Một số yếu tố thống kê Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài 2: Xác suất thực nghiệm Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài 1: Phép thử nghiệm – Sự kiện Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài tập ôn tập chương 8: Hình học phẳng. Các hình hình học cơ bản Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài 7: Số đo góc. Các góc đặc biệt Toán 6 Chân trời sáng tạo