Trắc nghiệm Các dạng toán về phân số với tử số và mẫu số là số nguyên Toán 6 Chân trời sáng tạo
Đề bài
Trong các cách viết sau đây, cách viết nào cho ta phân số:
-
A.
\(\dfrac{{12}}{0}\)
-
B.
\(\dfrac{{ - 4}}{5}\)
-
C.
\(\dfrac{3}{{0,25}}\)
-
D.
\(\dfrac{{4,4}}{{11,5}}\)
Phần tô màu trong hình sau biểu diễn phân số nào?
-
A.
\(\dfrac{1}{2}\)
-
B.
\(\dfrac{1}{4}\)
-
C.
\(\dfrac{3}{4}\)
-
D.
\(\dfrac{5}{8}\)
Tìm số nguyên \(x\) biết \(\dfrac{{35}}{{15}} = \dfrac{x}{3}?\)
-
A.
\(x = 7\)
-
B.
\(x = 5\)
-
C.
\(x = 15\)
-
D.
\(x = 6\)
Cho tập \(A = \left\{ {1; - 2;3;4} \right\}\). Có bao nhiêu phân số có tử số và mẫu số thuộc \(A\) mà có tử số khác mẫu số và tử số trái dấu với mẫu số?
-
A.
\(9\)
-
B.
\(6\)
-
C.
\(3\)
-
D.
\(12\)
Cho biểu thức \(C = \dfrac{{11}}{{2n + 1}}\) . Tìm tất cả các giá trị của $n$ nguyên để giá trị của $C$ là một số tự nhiên.
-
A.
\(n \in \left\{ { - 6; - 1;0;5} \right\}\)
-
B.
\(n \in \left\{ { - 1;5} \right\}\)
-
C.
\(n \in \left\{ {0;5} \right\}\)
-
D.
\(n \in \left\{ {1;11} \right\}\)
Có bao nhiêu giá trị nguyên dương của \(n\) để \(\dfrac{9}{{4n + 1}}\) đạt giá trị nguyên.
-
A.
\(1\)
-
B.
\(0\)
-
C.
\(2\)
-
D.
\(3\)
Tổng các số \(a;b;c\) thỏa mãn \(\dfrac{6}{9} = \dfrac{{12}}{a} = \dfrac{b}{{ - 54}} = \dfrac{{ - 738}}{c}\) là:
-
A.
\(1161\)
-
B.
\( - 1125\)
-
C.
\( - 1053\)
-
D.
\(1089\)
Cho các phân số: \(\dfrac{{15}}{{60}};\dfrac{{ - 7}}{5};\dfrac{6}{{15}};\dfrac{{28}}{{ - 20}};\dfrac{3}{{12}}\)
Số cặp phân số bằng nhau trong những phân số trên là:
-
A.
\(4\)
-
B.
\(1\)
-
C.
\(3\)
-
D.
\(2\)
Tìm tập hợp các số nguyên \(n\) để \(A = \dfrac{{3n - 5}}{{n + 4}}\) có giá trị là số nguyên.
-
A.
\(n \in \left\{ {13} \right\}\)
-
B.
\(n \in \left\{ { - 21; - 5; - 3;13} \right\}\)
-
C.
\(n \in \left\{ { - 17; - 1;1;17} \right\}\)
-
D.
\(n \in \left\{ { - 13; - 3;3;13} \right\}\)
Có bao nhiêu cặp số nguyên \(\left( {x;y} \right)\) thỏa mãn \(\dfrac{x}{5} = \dfrac{3}{y}\) và \(x > y?\)
-
A.
\(4\)
-
B.
\(3\)
-
C.
\(2\)
-
D.
\(1\)
Tìm \(x;y\) biết \(\dfrac{{x - 4}}{{y - 3}} = \dfrac{4}{3}\) và \(x - y = 5.\)
-
A.
\(x = 15;y = 5\)
-
B.
\(x = 5;y = 15\)
-
C.
\(x = 20;y = 15\)
-
D.
\(x = 25;y = 10\)
Tìm số nguyên \(x\) biết rằng \(\dfrac{x}{3} = \dfrac{{27}}{x}\) và \(x < 0.\)
-
A.
\(x = 81\)
-
B.
\(x = - 81\)
-
C.
\(x = - 9\)
-
D.
\(x = 9\)
Viết số nguyên \( - 16\) dưới dạng phân số ta được:
-
A.
\(\dfrac{{ - 16}}{0}\)
-
B.
\(\dfrac{{16}}{1}\)
-
C.
\(\dfrac{{ - 16}}{1}\)
-
D.
\(\dfrac{{16}}{0}\)
Phân số \(\dfrac{{ - 9}}{7}\) được đọc là:
-
A.
Chín phần bảy
-
B.
Âm bảy phần chín
-
C.
Bảy phần chín
-
D.
Âm chín phần bảy
Lời giải và đáp án
Trong các cách viết sau đây, cách viết nào cho ta phân số:
-
A.
\(\dfrac{{12}}{0}\)
-
B.
\(\dfrac{{ - 4}}{5}\)
-
C.
\(\dfrac{3}{{0,25}}\)
-
D.
\(\dfrac{{4,4}}{{11,5}}\)
Đáp án : B
Dựa vào định nghĩa phân số: \(\dfrac{a}{b}\) là phân số với \(a,b \in \mathbb{Z},\,b \ne 0\).
+) \(\dfrac{{12}}{0}\) không là phân số vì mẫu số bằng $0.$
+) \(\dfrac{3}{{0,25}}\) không là phân số vì mẫu số là số thập phân.
+) \(\dfrac{{4,4}}{{11,5}}\) không là phân số vì tử số và mẫu số là số thập phân.
+) \(\dfrac{{ - 4}}{5}\) là phân số vì \( - 4;\,5\, \in \mathbb{Z} \) và mẫu số là $5$ khác $0.$
Phần tô màu trong hình sau biểu diễn phân số nào?
-
A.
\(\dfrac{1}{2}\)
-
B.
\(\dfrac{1}{4}\)
-
C.
\(\dfrac{3}{4}\)
-
D.
\(\dfrac{5}{8}\)
Đáp án : B
Quan sát hình vẽ, đếm số ô vuông có trong hình và số ô vuông được tô màu, phân số biểu thị có tử là số ô vuông tô màu và mẫu là tổng số ô vuông có trong hình.
Trong hình có \(2\) ô vuông tô màu và tổng tất cả \(8\) ô vuông nên phân số biểu thị là \(\dfrac{2}{8} = \dfrac{1}{4}\)
Tìm số nguyên \(x\) biết \(\dfrac{{35}}{{15}} = \dfrac{x}{3}?\)
-
A.
\(x = 7\)
-
B.
\(x = 5\)
-
C.
\(x = 15\)
-
D.
\(x = 6\)
Đáp án : A
Sử dụng kiến thức:
Hai phân số \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) gọi là bằng nhau nếu \(a.d = b.c\) (tích chéo bằng nhau)
\(\begin{array}{l}\dfrac{{35}}{{15}} = \dfrac{x}{3}\\35.3 = 15.x\\x = \dfrac{{35.3}}{{15}}\\x = 7\end{array}\)
Vậy \(x = 7\)
Cho tập \(A = \left\{ {1; - 2;3;4} \right\}\). Có bao nhiêu phân số có tử số và mẫu số thuộc \(A\) mà có tử số khác mẫu số và tử số trái dấu với mẫu số?
-
A.
\(9\)
-
B.
\(6\)
-
C.
\(3\)
-
D.
\(12\)
Đáp án : B
- Liệt kê các phân số thỏa mãn bài toán.
- Đếm số phân số và kết luận đáp án đúng.
Các phân số thỏa mãn bài toán là:
$\dfrac{1}{{ - 2}},\dfrac{3}{{ - 2}},\dfrac{4}{{ - 2}},\dfrac{{ - 2}}{1},\dfrac{{ - 2}}{3},\dfrac{{ - 2}}{4}$
Vậy có tất cả \(6\) phân số.
Cho biểu thức \(C = \dfrac{{11}}{{2n + 1}}\) . Tìm tất cả các giá trị của $n$ nguyên để giá trị của $C$ là một số tự nhiên.
-
A.
\(n \in \left\{ { - 6; - 1;0;5} \right\}\)
-
B.
\(n \in \left\{ { - 1;5} \right\}\)
-
C.
\(n \in \left\{ {0;5} \right\}\)
-
D.
\(n \in \left\{ {1;11} \right\}\)
Đáp án : C
- $C$ là số tự nhiên suy ra \(C\) là số nguyên hay $2n + 1$ là ước của $11$
- Từ đó tìm các giá trị của $n$ rồi thử lại kiểm tra lại điều kiện \(C\) là số tự nhiên.
Vì \(C \in N\) nên \(\frac{11}{2n+1} \in N.\)
Để \(\frac{11}{2n+1} \in N\) thì \(11 \vdots (2n+1)\) và \((2n+1) > 0\) hay \((2n+1) \in \left\{ { 1; 11} \right\}\)
Ta có bảng:
Vì \(C \in N\) nên ta nhận các giá trị \(n = 0;n = 5\)
Có bao nhiêu giá trị nguyên dương của \(n\) để \(\dfrac{9}{{4n + 1}}\) đạt giá trị nguyên.
-
A.
\(1\)
-
B.
\(0\)
-
C.
\(2\)
-
D.
\(3\)
Đáp án : A
Phân số \(\dfrac{a}{b}\left( {a,b \in Z,b \ne 0} \right)\) là một số nguyên nếu \(b\) là ước của $a$
Vì \(n\) nguyên dương nên để \(\dfrac{9}{{4n + 1}}\) nguyên thì \(4n + 1 \in U\left( 9 \right) = \left\{ { \pm 1; \pm 3; \pm 9} \right\}\)
Ta có bảng:
Vậy có duy nhất một giá trị của \(n\) thỏa mãn là \(n = 2\)
Tổng các số \(a;b;c\) thỏa mãn \(\dfrac{6}{9} = \dfrac{{12}}{a} = \dfrac{b}{{ - 54}} = \dfrac{{ - 738}}{c}\) là:
-
A.
\(1161\)
-
B.
\( - 1125\)
-
C.
\( - 1053\)
-
D.
\(1089\)
Đáp án : B
Sử dụng kiến thức:
Hai phân số \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) gọi là bằng nhau nếu \(a.d = b.c\) (tích chéo bằng nhau)
Ta có: \(\dfrac{6}{9} = \dfrac{{12}}{a} \) nên \(6.a = 9.12\) suy ra \( a = \dfrac{{9.12}}{6} = 18\)
\(\dfrac{6}{9} = \dfrac{b}{{ - 54}} \) nên \(6.\left( { - 54} \right) = 9.b\) suy ra \(b = \dfrac{{6.\left( { - 54} \right)}}{9} = - 36\)
\(\dfrac{6}{9} = \dfrac{{ - 738}}{c} \) nên \(6.c = 9.\left( { - 738} \right)\) suy ra \(c = \dfrac{{9.\left( { - 738} \right)}}{6} = - 1107\)
Vậy \(a + b + c\) \( = 18 + \left( { - 36} \right) + \left( { - 1107} \right) = - 1125\)
Cho các phân số: \(\dfrac{{15}}{{60}};\dfrac{{ - 7}}{5};\dfrac{6}{{15}};\dfrac{{28}}{{ - 20}};\dfrac{3}{{12}}\)
Số cặp phân số bằng nhau trong những phân số trên là:
-
A.
\(4\)
-
B.
\(1\)
-
C.
\(3\)
-
D.
\(2\)
Đáp án : D
- Ta sẽ chia các phân số thành \(2\) loại: phân số dương, phân số âm (chú ý phân số dương và phân số âm không thể bằng nhau)
- Tìm các cặp phân số bằng nhau trong những phân số dương và các cặp phân số bằng nhau trong những phân số âm rồi kết luận.
Sử dụng kiến thức:
- Hai phân số \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) gọi là bằng nhau nếu \(a.d = b.c\) (tích chéo bằng nhau)
- Định nghĩa các phân số dương, phân số âm:
+ Phân số âm: là phân số có tử và mẫu là các số nguyên trái dấu.
+ Phân số dương: là phân số có tử và mẫu là các số nguyên cùng dấu.
- Các phân số dương: \(\dfrac{{15}}{{60}};\dfrac{6}{{15}};\dfrac{3}{{12}}\)
+ Vì \(15.15 \ne 60.6\) nên \(\dfrac{{15}}{{60}} \ne \dfrac{6}{{15}}\)
+ Vì \(6.12 \ne 15.3\) nên \(\dfrac{6}{{15}} \ne \dfrac{3}{{12}}\)
+ Vì \(15.12 = 60.3\) nên \(\dfrac{{15}}{{60}} = \dfrac{3}{{12}}\)
- Các phân số âm: \(\dfrac{{ - 7}}{5};\dfrac{{28}}{{ - 20}}\)
Vì \(\left( { - 7} \right).\left( { - 20} \right) = 5.28\) nên \(\dfrac{{ - 7}}{5} = \dfrac{{28}}{{ - 20}}\)
Vậy có hai cặp phân số bằng nhau trong các phân số đã cho.
Tìm tập hợp các số nguyên \(n\) để \(A = \dfrac{{3n - 5}}{{n + 4}}\) có giá trị là số nguyên.
-
A.
\(n \in \left\{ {13} \right\}\)
-
B.
\(n \in \left\{ { - 21; - 5; - 3;13} \right\}\)
-
C.
\(n \in \left\{ { - 17; - 1;1;17} \right\}\)
-
D.
\(n \in \left\{ { - 13; - 3;3;13} \right\}\)
Đáp án : B
- Biến đổi \(A\) về dạng \(A = a + \dfrac{b}{{n + 4}}\) với \(a,b \in Z\)
- Để \(A\) nguyên thì \(n + 4 \in U\left( b \right)\)
Ta có:
\(A = \dfrac{{3n - 5}}{{n + 4}} = \dfrac{{3n + 12 - 12 - 5}}{{n + 4}}\)\( = \dfrac{{3\left( {n + 4} \right) + \left( { - 17} \right)}}{{n + 4}}\) \( = \dfrac{{3\left( {n + 4} \right)}}{{n + 4}} + \dfrac{{ - 17}}{{n + 4}} = 3 + \dfrac{{ - 17}}{{n + 4}}\)
Vì \(n \in Z\) nên để \(A \in Z\) thì \(n + 4 \in U\left( { - 17} \right) = \left\{ { \pm 1; \pm 17} \right\}\)
Ta có bảng:
Vậy \(n \in \left\{ { - 21; - 5; - 3;13} \right\}\)
Có bao nhiêu cặp số nguyên \(\left( {x;y} \right)\) thỏa mãn \(\dfrac{x}{5} = \dfrac{3}{y}\) và \(x > y?\)
-
A.
\(4\)
-
B.
\(3\)
-
C.
\(2\)
-
D.
\(1\)
Đáp án : A
Sử dụng kiến thức:
Hai phân số \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) gọi là bằng nhau nếu \(a.d = b.c\) (tích chéo bằng nhau)
Ta có: \(\dfrac{x}{5} = \dfrac{3}{y}\)\( \Rightarrow x.y = 5.3 = 15\)
Mà \(15 = 5.3 = 15.1 = \left( { - 3} \right).\left( { - 5} \right) = \left( { - 1} \right).\left( { - 15} \right)\) và \(x,y \in Z,x > y\) nên \(\left( {x;y} \right) \in \left\{ {\left( {5;3} \right),\left( {15;1} \right),\left( { - 3; - 5} \right),\left( { - 1; - 15} \right)} \right\}\)
Tìm \(x;y\) biết \(\dfrac{{x - 4}}{{y - 3}} = \dfrac{4}{3}\) và \(x - y = 5.\)
-
A.
\(x = 15;y = 5\)
-
B.
\(x = 5;y = 15\)
-
C.
\(x = 20;y = 15\)
-
D.
\(x = 25;y = 10\)
Đáp án : C
- Rút \(x\) theo \(y\) từ điều kiện đơn giản rồi thay vào đẳng thức hai phân số bằng nhau.
- Sử dụng kiến thức hai phân số bằng nhau để tìm \(y,\) từ đó suy ra \(x\)
- Hai phân số \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) gọi là bằng nhau nếu \(a.d = b.c\) (tích chéo bằng nhau)
Ta có: \(x - y = 5 \Rightarrow x = y + 5\) thay vào \(\dfrac{{x - 4}}{{y - 3}} = \dfrac{4}{3}\) ta được:
\(\begin{array}{l}\dfrac{{y + 5 - 4}}{{y - 3}} = \dfrac{4}{3}\\\dfrac{{y + 1}}{{y - 3}} = \dfrac{4}{3}\\3\left( {y + 1} \right) = 4\left( {y - 3} \right)\\3y + 3 = 4y - 12\\3y - 4y = - 12 - 3\\ - y = - 15\\y = 15\\ \Rightarrow x = 15 + 5 = 20\end{array}\)
Vậy \(x = 20;y = 15\)
Tìm số nguyên \(x\) biết rằng \(\dfrac{x}{3} = \dfrac{{27}}{x}\) và \(x < 0.\)
-
A.
\(x = 81\)
-
B.
\(x = - 81\)
-
C.
\(x = - 9\)
-
D.
\(x = 9\)
Đáp án : C
Hai phân số \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) gọi là bằng nhau nếu \(a.d = b.c\) (tích chéo bằng nhau).
\(\begin{array}{l}\dfrac{x}{3} = \dfrac{{27}}{x}\\x.x = 81\\{x^2} = 81\end{array}\)
Ta có: \(x = 9\) hoặc \(x = - 9\)
Kết hợp điều kiện \(x < 0\) nên có một giá trị \(x\) thỏa mãn là: \(x = - 9\)
Viết số nguyên \( - 16\) dưới dạng phân số ta được:
-
A.
\(\dfrac{{ - 16}}{0}\)
-
B.
\(\dfrac{{16}}{1}\)
-
C.
\(\dfrac{{ - 16}}{1}\)
-
D.
\(\dfrac{{16}}{0}\)
Đáp án : C
Viết số nguyên \( - 16\) dưới dạng phân số ta được: \(\dfrac{{ - 16}}{1}\)
Phân số \(\dfrac{{ - 9}}{7}\) được đọc là:
-
A.
Chín phần bảy
-
B.
Âm bảy phần chín
-
C.
Bảy phần chín
-
D.
Âm chín phần bảy
Đáp án : D
Phân số \(\dfrac{{ - 9}}{7}\) được đọc là: Âm chín phần bảy
Luyện tập và củng cố kiến thức Bài 2: Tính chất cơ bản của phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về tính chất cơ bản của phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3: So sánh phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4: Phép cộng và phép trừ phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép cộng và phép trừ phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 5: Phép nhân và phép chia phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép nhân và phép chia phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 6: Giá trị phân số của một số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 7: Hỗn số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài tập ôn tập chương 5: Phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 1: Phân số với tử số và mẫu số là số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài tập ôn tập chương 9: Một số yếu tố thống kê Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài 2: Xác suất thực nghiệm Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài 1: Phép thử nghiệm – Sự kiện Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài tập ôn tập chương 8: Hình học phẳng. Các hình hình học cơ bản Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài 7: Số đo góc. Các góc đặc biệt Toán 6 Chân trời sáng tạo