Trắc nghiệm Bài 3 (tiếp) Phép trừ hai số nguyên và quy tắc dấu ngoặc Toán 6 Chân trời sáng tạo
Đề bài
Tính \(125 - 200\)
-
A.
$ - 75$
-
B.
$75$
-
C.
$ - 85$
-
D.
$85$
Tìm \(x\) biết \(9 + x = 2.\)
-
A.
$7$
-
B.
$ - 7$
-
C.
$11$
-
D.
$ - 11$
Chọn câu sai.
-
A.
$112 - 908 = - 786$
-
B.
$76 - 98 < - 5$
-
C.
$98 - 1116 < 103 - 256$
-
D.
$56 - 90 > 347 - 674$
Tính \(M = 90 - \left( { - 113} \right) - 78\) ta được:
-
A.
$M > 100$
-
B.
$M < 50$
-
C.
$M < 0$
-
D.
$M > 150$
Gọi \({x_1}\) là giá trị thỏa mãn \( - 76 - x = 89 - 100\) và \({x_2}\) là giá trị thỏa mãn \(x - \left( { - 78} \right) = 145 - 165.\) Tính \({x_1} - {x_2}.\)
-
A.
$33$
-
B.
$ - 100$
-
C.
$163$
-
D.
$ - 163$
Kết quả của phép trừ: \(\left( { - 47} \right) - 53\) là:
-
A.
\(6\)
-
B.
\( - 6\)
-
C.
\(100\)
-
D.
\( - 100\)
Đơn giản biểu thức: \(x + 1982 + 172 + \left( { - 1982} \right) - 162\) ta được kết quả là:
-
A.
$x - 10$
-
B.
$x + 10$
-
C.
$10$
-
D.
$x$
Chọn câu đúng.
-
A.
$\left( { - 7} \right) + 1100 + \left( { - 13} \right) + \left( { - 1100} \right) = 20$
-
B.
$\left( { - 7} \right) + 1100 + \left( { - 13} \right) + \left( { - 1100} \right) = - 20$
-
C.
$\left( { - 7} \right) + 1100 + \left( { - 13} \right) + \left( { - 1100} \right) = 30$
-
D.
$\left( { - 7} \right) + 1100 + \left( { - 13} \right) + \left( { - 1100} \right) = - 10$
Đơn giản biểu thức $235 + x - \left( {65 + x} \right) + x$ ta được
-
A.
\(x + 170\)
-
B.
\(300 + x\)
-
C.
\(300 - x\)
-
D.
\(170 + 3x\)
Bỏ ngoặc rồi tính $5-\left( {4-7 + 12} \right) + \left( {4-7 + 12} \right)$ ta được
-
A.
\( - 13\)
-
B.
\(5\)
-
C.
\( - 23\)
-
D.
\(23\)
Kết quả của phép tính \(\left( { - 98} \right) + 8 + 12 + 98\) là
-
A.
\(0\)
-
B.
\(4\)
-
C.
\(10\)
-
D.
\(20\)
Tổng \(\left( { - 43567 - 123} \right) + 43567\) bằng:
-
A.
\( - 123\)
-
B.
\( - 124\)
-
C.
\( - 125\)
-
D.
\(87011\)
Tính hợp lý $\left( { - 1215} \right) - \left( { - 215 + 115} \right) - \left( { - 1115} \right)$ ta được
-
A.
\( - 2000\)
-
B.
\(2000\)
-
C.
\(0\)
-
D.
\(1000\)
Cho $M = 14-23 + \left( {5-14} \right)-\left( {5-23} \right) + 17$ và \(N = 24-\left( {72-13 + 24} \right)-\left( {72-13} \right)\). Chọn câu đúng.
-
A.
\(M > N\)
-
B.
\(N > M\)
-
C.
\(M = N\)
-
D.
\(N = - M\)
Sau khi bỏ ngoặc \(\left( {b - a + c} \right) - \left( {a + b + c} \right) + a\) ta được
-
A.
\( - a + 2b + 2c\)
-
B.
\( - 3a\)
-
C.
\(3a\)
-
D.
\( - a\)
Biểu thức \(a - \left( {b + c - d} \right) + \left( { - d} \right) - a\) sau khi bỏ ngoặc là
-
A.
\( - b - c\)
-
B.
\( - b - c - d\)
-
C.
\( - b - c + 2d\)
-
D.
\( - b - c - 2d\)
Thu gọn biểu thức \(z - (x + y - z) - \left( { - x} \right)\) ta được:
-
A.
\(2y - x\)
-
B.
\(y - 2x\)
-
C.
\(2z - y\)
-
D.
\(y\)
Sau khi thu gọn \(x - 34 - \left[ {\left( {15 + x} \right) - \left( {23 - x} \right)} \right]\) ta được
-
A.
\(x - 26\)
-
B.
\( - x - 72\)
-
C.
\(x - 72\)
-
D.
\( - x - 26\)
Bỏ ngoặc rồi tính $30 - \left\{ {51 + \left[ { - 9 - \left( {51 - 18} \right) - 18} \right]} \right\}$ ta được
-
A.
\(21\)
-
B.
\(0\)
-
C.
\(39\)
-
D.
\( - 21\)
Giá trị biểu thức \(M = - \left( {3251 + 415} \right) - \left( { - 2000 + 585 - 251} \right)\) là
-
A.
\(2000\)
-
B.
\(-2000\)
-
C.
\( - 1000\)
-
D.
\( - 3000\)
Chọn câu trả lời đúng nhất. Giá trị của \(P = 2001-\left( {53 + 1579} \right)-\left( { - 53} \right)\) là
-
A.
là số nguyên âm
-
B.
là số nguyên dương
-
C.
là số nhỏ hơn \( - 2\)
-
D.
là số nhỏ hơn \(100\)
Lời giải và đáp án
Tính \(125 - 200\)
-
A.
$ - 75$
-
B.
$75$
-
C.
$ - 85$
-
D.
$85$
Đáp án : A
Muốn trừ số nguyên $a$ cho số nguyên $b,$ ta cộng $a$ với số đối của $b:$
$a - b = a + \left( { - b} \right)$
\(125 - 200 = 125 + \left( { - 200} \right)\)\( = - \left( {200 - 125} \right) = - 75\)
Tìm \(x\) biết \(9 + x = 2.\)
-
A.
$7$
-
B.
$ - 7$
-
C.
$11$
-
D.
$ - 11$
Đáp án : B
Muốn tìm số hạng chưa biết trong một tổng, ta thực hiện:
Số hạng chưa biết $ = $ Tổng $ - $ Số hạng đã biết
\(\begin{array}{l}9 + x = 2\\x = 2 - 9\\x = - 7\end{array}\)
Chọn câu sai.
-
A.
$112 - 908 = - 786$
-
B.
$76 - 98 < - 5$
-
C.
$98 - 1116 < 103 - 256$
-
D.
$56 - 90 > 347 - 674$
Đáp án : A
Thực hiện các phép tính ở mỗi đáp án, so sánh và kết luận đáp án đúng.
Chú ý:
+ Muốn trừ số nguyên $a$ cho số nguyên $b,$ ta cộng $a$ với số đối của $b.$
$a-b = a + \left( { - b} \right)$.
Đáp án A: $112 - 908 = 112 + \left( { - 908} \right) = - \left( {908 - 112} \right) = - 796$ nên A sai.
Đáp án B: $76 - 98 = 76 + \left( { - 98} \right) = - \left( {98 - 76} \right) = - 22 < - 5$ nên B đúng.
Đáp án C: $98 - 1116 = 98 + \left( { - 1116} \right) = - \left( {1116 - 98} \right) = - 1018$
$103 - 256 = 103 + \left( { - 256} \right) = - \left( {256 - 103} \right) = - 153$
Vì \( - 1018 < - 153\) nên C đúng.
Đáp án D: $56 - 90 = 56 + \left( { - 90} \right) = - \left( {90 - 56} \right) = - 34$
$347 - 674 = 347 + \left( { - 674} \right) = - \left( {674 - 347} \right) = - 327$
Vì \( - 34 > - 327\) nên D đúng.
Tính \(M = 90 - \left( { - 113} \right) - 78\) ta được:
-
A.
$M > 100$
-
B.
$M < 50$
-
C.
$M < 0$
-
D.
$M > 150$
Đáp án : A
Thực hiện phép trừ các số nguyên từ trái qua phải: \(a - b - c = \left( {a - b} \right) - c\)
\(M = 90 - \left( { - 113} \right) - 78\)
\( = \left[ {90 - \left( { - 113} \right)} \right] - 78\)
\( = \left( {90 + 113} \right) - 78\)
\( = 203 - 78 = 125\)
Vậy \(M = 125 > 100\)
Gọi \({x_1}\) là giá trị thỏa mãn \( - 76 - x = 89 - 100\) và \({x_2}\) là giá trị thỏa mãn \(x - \left( { - 78} \right) = 145 - 165.\) Tính \({x_1} - {x_2}.\)
-
A.
$33$
-
B.
$ - 100$
-
C.
$163$
-
D.
$ - 163$
Đáp án : A
- Tìm hai giá trị \({x_1}\) và \({x_2}\)
- Thực hiện phép trừ \({x_1} - {x_2}\)
+ Tìm \({x_1}\)
\(\begin{array}{l} - 76 - x = 89 - 100\\ - 76 - x = - 11\\x = - 76 - \left( { - 11} \right)\\x = - 65\end{array}\)
Do đó \({x_1} = - 65\)
+ Tìm \({x_2}\)
\(\begin{array}{l}x - \left( { - 78} \right) = 145 - 165\\x - \left( { - 78} \right) = - 20\\x = - 20 + \left( { - 78} \right)\\x = - 98\end{array}\)
Do đó \({x_2} = - 98\)
Vậy \({x_1} - {x_2} = \left( { - 65} \right) - \left( { - 98} \right)\) \( = \left( { - 65} \right) + 98 = 33\)
Kết quả của phép trừ: \(\left( { - 47} \right) - 53\) là:
-
A.
\(6\)
-
B.
\( - 6\)
-
C.
\(100\)
-
D.
\( - 100\)
Đáp án : D
Muốn trừ số nguyên \(a\) cho số nguyên \(b\), ta cộng \(a\) với số đối của b:
\(a - b = a + \left( { - b} \right)\)
\(\left( { - 47} \right) - 53 = - 47 + \left( { - 53} \right) = - \left( {47 + 53} \right) = - 100.\)
Đơn giản biểu thức: \(x + 1982 + 172 + \left( { - 1982} \right) - 162\) ta được kết quả là:
-
A.
$x - 10$
-
B.
$x + 10$
-
C.
$10$
-
D.
$x$
Đáp án : B
\(\begin{array}{l}x + 1982 + 172 + \left( { - 1982} \right) - 162\\ = x + \left[ {1982 + \left( { - 1982} \right)} \right] + \left( {172 - 162} \right)\\ = x + 0 + 10\\ = x + 10\end{array}\)
Chọn câu đúng.
-
A.
$\left( { - 7} \right) + 1100 + \left( { - 13} \right) + \left( { - 1100} \right) = 20$
-
B.
$\left( { - 7} \right) + 1100 + \left( { - 13} \right) + \left( { - 1100} \right) = - 20$
-
C.
$\left( { - 7} \right) + 1100 + \left( { - 13} \right) + \left( { - 1100} \right) = 30$
-
D.
$\left( { - 7} \right) + 1100 + \left( { - 13} \right) + \left( { - 1100} \right) = - 10$
Đáp án : B
Thay đổi vị trí số hạng và bỏ hoặc đặt dấu ngoặc một cách thích hợp rồi tính.
$\begin{array}{l}\left( { - 7} \right) + 1100 + \left( { - 13} \right) + \left( { - 1100} \right)\\ = \left[ {\left( { - 7} \right) + \left( { - 13} \right)} \right] + \left[ {1100 + \left( { - 1100} \right)} \right]\\ = - 20 + 0\\ = - 20\end{array}$
Đơn giản biểu thức $235 + x - \left( {65 + x} \right) + x$ ta được
-
A.
\(x + 170\)
-
B.
\(300 + x\)
-
C.
\(300 - x\)
-
D.
\(170 + 3x\)
Đáp án : A
Bỏ dấu ngoặc rồi thực hiện tính
Lưu ý:
Khi bỏ dấu ngoặc có dấu $'' - ''$ đằng trước, ta phải đổi dấu tất cả các số hạng trong dấu ngoặc: dấu \('' + ''\) chuyển thành dấu \('' - ''\) và dấu \('' - ''\) chuyển thành dấu \('' + ''\).
Khi bỏ dấu ngoặc có dấu \('' + ''\) đằng trước thì dấu các số hạng trong ngoặc vẫn được giữ nguyên.
$\begin{array}{l}235 + x - \left( {65 + x} \right) + x\\ = 235 + x - 65 - x + x\\ = \left( {235 - 65} \right) + \left( {x - x + x} \right)\\ = 170 + x\end{array}$
Bỏ ngoặc rồi tính $5-\left( {4-7 + 12} \right) + \left( {4-7 + 12} \right)$ ta được
-
A.
\( - 13\)
-
B.
\(5\)
-
C.
\( - 23\)
-
D.
\(23\)
Đáp án : B
Quy tắc bỏ dấu ngoặc:
Khi bỏ dấu ngoặc có dấu $'' - ''$ đằng trước, ta phải đổi dấu tất cả các số hạng trong dấu ngoặc: dấu \('' + ''\) chuyển thành dấu \('' - ''\) và dấu \('' - ''\) chuyển thành dấu \('' + ''\).
Khi bỏ dấu ngoặc có dấu \('' + ''\) đằng trước thì dấu các số hạng trong ngoặc vẫn được giữ nguyên.
$\begin{array}{l}5-\left( {4-7 + 12} \right) + \left( {4-7 + 12} \right)\\ = 5 - 4 + 7 - 12 + 4 - 7 + 12\\ = 5 - 4 + 4 + 7 - 7 - 12 + 12\\ = 5 - \left( {4 - 4} \right) + \left( {7 - 7} \right) - \left( {12 - 12} \right)\\ = 5 - 0 + 0 - 0\\ = 5\end{array}$
Kết quả của phép tính \(\left( { - 98} \right) + 8 + 12 + 98\) là
-
A.
\(0\)
-
B.
\(4\)
-
C.
\(10\)
-
D.
\(20\)
Đáp án : D
\(\begin{array}{l}\left( { - 98} \right) + 8 + 12 + 98\\ = \left[ {\left( { - 98} \right) + 98} \right] + \left( {8 + 12} \right)\\ = 0 + 20\\ = 20\end{array}\)
Tổng \(\left( { - 43567 - 123} \right) + 43567\) bằng:
-
A.
\( - 123\)
-
B.
\( - 124\)
-
C.
\( - 125\)
-
D.
\(87011\)
Đáp án : A
\(\begin{array}{l}\left( { - 43567 - 123} \right) + 43567\\ = - 43567 - 123 + 43567\\ = \left[ {\left( { - 43567} \right) + 43567} \right] + \left( { - 123} \right)\\ = 0 + \left( { - 123} \right)\\ = - 123\end{array}\)
Tính hợp lý $\left( { - 1215} \right) - \left( { - 215 + 115} \right) - \left( { - 1115} \right)$ ta được
-
A.
\( - 2000\)
-
B.
\(2000\)
-
C.
\(0\)
-
D.
\(1000\)
Đáp án : C
Bỏ dấu ngoặc rồi thực hiện tính
Lưu ý:
Khi bỏ dấu ngoặc có dấu $'' - ''$ đằng trước, ta phải đổi dấu tất cả các số hạng trong dấu ngoặc: dấu \('' + ''\) chuyển thành dấu \('' - ''\) và dấu \('' - ''\) chuyển thành dấu \('' + ''\).
Khi bỏ dấu ngoặc có dấu \('' + ''\) đằng trước thì dấu các số hạng trong ngoặc vẫn được giữ nguyên.
Chú ý:
Trong một tổng đại số ta có thể thay đổi vị trí các số hạng kèm theo dấu của chúng.
\(a - b - c = - b + a - c = - b - c + a\)
$\begin{array}{l}\left( { - 1215} \right) - \left( { - 215 + 115} \right) - \left( { - 1115} \right)\\ = \left( { - 1215} \right) + 215 - 115 + 1115\\ = \left[ {\left( { - 1215} \right) + 215} \right] + \left( {1115 - 115} \right)\\ = - 1000 + 1000\\ = 0\end{array}$
Cho $M = 14-23 + \left( {5-14} \right)-\left( {5-23} \right) + 17$ và \(N = 24-\left( {72-13 + 24} \right)-\left( {72-13} \right)\). Chọn câu đúng.
-
A.
\(M > N\)
-
B.
\(N > M\)
-
C.
\(M = N\)
-
D.
\(N = - M\)
Đáp án : A
- Tính hai giá trị \(M,N\) bằng cách bỏ dấu ngoặc, thay đổi thứ tự các số hạng tính hợp lý.
- So sánh hai giá trị \(M,N\) tìm được và kết luận.
$\begin{array}{l}M = 14-23 + \left( {5-14} \right)-\left( {5-23} \right) + 17\\ = 14 - 23 + 5 - 14 - 5 + 23 + 17\\ = \left( {14 - 14} \right) - \left( {23 - 23} \right) + \left( {5 - 5} \right) + 17\\ = 0 - 0 + 0 + 17\\ = 17\end{array}$
\(\begin{array}{l}N = 24-\left( {72-13 + 24} \right)-\left( {72-13} \right)\\ = 24 - 72 + 13 - 24 - 72 + 13\\ = \left( {24 - 24} \right) - \left( {72 + 72} \right) + \left( {13 + 13} \right)\\ = 0 - 144 + 26\\ = - 118\end{array}\)
Do đó \(M > N\)
Sau khi bỏ ngoặc \(\left( {b - a + c} \right) - \left( {a + b + c} \right) + a\) ta được
-
A.
\( - a + 2b + 2c\)
-
B.
\( - 3a\)
-
C.
\(3a\)
-
D.
\( - a\)
Đáp án : D
Khi bỏ dấu ngoặc có dấu $'' - ''$ đằng trước, ta phải đổi dấu tất cả các số hạng trong dấu ngoặc: dấu \('' + ''\) chuyển thành dấu \('' - ''\) và dấu \('' - ''\) chuyển thành dấu \('' + ''\).
Khi bỏ dấu ngoặc có dấu \('' + ''\) đằng trước thì dấu các số hạng trong ngoặc vẫn được giữ nguyên.
\(\begin{array}{l}\left( {b - a + c} \right) - \left( {a + b + c} \right) + a\\ = b - a + c - a - b - c + a\\ = \left( {b - b} \right) - \left( {a + a - a} \right) + \left( {c - c} \right)\\ = 0 - a + 0\\ = - a\end{array}\)
Biểu thức \(a - \left( {b + c - d} \right) + \left( { - d} \right) - a\) sau khi bỏ ngoặc là
-
A.
\( - b - c\)
-
B.
\( - b - c - d\)
-
C.
\( - b - c + 2d\)
-
D.
\( - b - c - 2d\)
Đáp án : A
Khi bỏ dấu ngoặc có dấu $'' - ''$ đằng trước, ta phải đổi dấu tất cả các số hạng trong dấu ngoặc: dấu \('' + ''\) chuyển thành dấu \('' - ''\) và dấu \('' - ''\) chuyển thành dấu \('' + ''\).
Khi bỏ dấu ngoặc có dấu \('' + ''\) đằng trước thì dấu các số hạng trong ngoặc vẫn được giữ nguyên.
\(\begin{array}{l}a - \left( {b + c - d} \right) + \left( { - d} \right) - a\\ = a - b - c + d - d - a\\ = \left( {a - a} \right) - b - c + \left( {d - d} \right)\\ = 0 - b - c + 0\\ = - b - c\end{array}\)
Thu gọn biểu thức \(z - (x + y - z) - \left( { - x} \right)\) ta được:
-
A.
\(2y - x\)
-
B.
\(y - 2x\)
-
C.
\(2z - y\)
-
D.
\(y\)
Đáp án : C
Khi bỏ dấu ngoặc, nếu đằng trước dấu ngoặc:
Có dấu “-”, thì phải đổi dấu tất cả các số hạng trong ngoặc
\( - \left( {a + b - c} \right) = - a - b + c\)
\(\begin{array}{l}z - (x + y - z) - \left( { - x} \right) = z - x - y + z + x\\ = \left( { - x + x} \right) + \left( {z + z} \right) - y\\ = 0 + 2z - y\\ = 2z - y\end{array}\)
Sau khi thu gọn \(x - 34 - \left[ {\left( {15 + x} \right) - \left( {23 - x} \right)} \right]\) ta được
-
A.
\(x - 26\)
-
B.
\( - x - 72\)
-
C.
\(x - 72\)
-
D.
\( - x - 26\)
Đáp án : D
Áp dụng quy tắc bỏ dấu ngoặc và tính chất của tổng đại số
\(\begin{array}{l}x - 34 - \left[ {\left( {15 + x} \right) - \left( {23 - x} \right)} \right]\\ = x - 34 - \left[ {15 + x - 23 + x} \right]\\ = x - 34 - \left[ {\left( {x + x} \right) - \left( {23 - 15} \right)} \right]\\ = x - 34 - \left[ {2x - 8} \right]\\ = x - 34 - 2x + 8\\ = \left( {x - 2x} \right) + \left( {8 - 34} \right)\\ = - x - 26\end{array}\)
Bỏ ngoặc rồi tính $30 - \left\{ {51 + \left[ { - 9 - \left( {51 - 18} \right) - 18} \right]} \right\}$ ta được
-
A.
\(21\)
-
B.
\(0\)
-
C.
\(39\)
-
D.
\( - 21\)
Đáp án : C
Khi bỏ dấu ngoặc có dấu $'' - ''$ đằng trước, ta phải đổi dấu tất cả các số hạng trong dấu ngoặc: dấu \('' + ''\) chuyển thành dấu \('' - ''\) và dấu \('' - ''\) chuyển thành dấu \('' + ''\).
Khi bỏ dấu ngoặc có dấu \('' + ''\) đằng trước thì dấu các số hạng trong ngoặc vẫn được giữ nguyên.
Bỏ ngoặc theo thứ tự là: $\left( {} \right)\; \to \;\left[ {} \right]\; \to \;\left\{ {} \right\}$
$\begin{array}{l}30 - \left\{ {51 + \left[ { - 9 - \left( {51 - 18} \right) - 18} \right]} \right\}\\ = 30 - [ {51 + \left( { - 9 - 51 + 18 - 18} \right)}]\\ = 30 - ( {51 - 9 - 51})\\ = 30 + 9\\ = 39\end{array}$
Giá trị biểu thức \(M = - \left( {3251 + 415} \right) - \left( { - 2000 + 585 - 251} \right)\) là
-
A.
\(2000\)
-
B.
\(-2000\)
-
C.
\( - 1000\)
-
D.
\( - 3000\)
Đáp án : B
Áp dụng quy tắc bỏ dấu ngoặc và tính chất của tổng đại số
\(\begin{array}{l} - \left( {3251 + 415} \right) - \left( { - 2000 + 585 - 251} \right)\\ = - 3251 - 415 + 2000 - 585 + 251\\ = \left( { - 3251 + 251} \right) - \left( {415 + 585} \right) + 2000\\ = - 3000 - 1000 + 2000\\ = - 4000 + 2000\\ = - 2000\end{array}\)
Chọn câu trả lời đúng nhất. Giá trị của \(P = 2001-\left( {53 + 1579} \right)-\left( { - 53} \right)\) là
-
A.
là số nguyên âm
-
B.
là số nguyên dương
-
C.
là số nhỏ hơn \( - 2\)
-
D.
là số nhỏ hơn \(100\)
Đáp án : B
Tính giá trị của \(P\) và kết luận.
\(\begin{array}{l}P = 2001-\left( {53 + 1579} \right)-\left( { - 53} \right)\\ = 2001 - 53 - 1579 + 53\\ = \left( {2001 - 1579} \right) - \left( {53 - 53} \right)\\ = 422 - 0\\ = 422\end{array}\)
Do đó \(P\) là một số nguyên dương.
Ngoài ra \(P > 100\) nên các đấp án A, C, D đều sai.
Luyện tập và củng cố kiến thức Các dạng toán về phép cộng và phép trừ hai số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép cộng trừ hai số nguyên (tiếp) Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4: Phép nhân hai số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4 (tiếp) Phép chia hết, bội và ước của một số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép nhân và phép chia hai số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép nhân và phép chia hết hai số nguyên (tiếp) Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài tập ôn tập chương 2: Số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bai 3: Phép cộng hai số nguyên và tính chất phép cộng hai số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về thứ tự trong tập hợp số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 2: Thứ tự trong tập hợp số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về số nguyên âm và tập hợp các số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 1: Số nguyên âm và tập hợp các số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài tập ôn tập chương 9: Một số yếu tố thống kê Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài 2: Xác suất thực nghiệm Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài 1: Phép thử nghiệm – Sự kiện Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài tập ôn tập chương 8: Hình học phẳng. Các hình hình học cơ bản Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài 7: Số đo góc. Các góc đặc biệt Toán 6 Chân trời sáng tạo