Giải mục III trang 19 SGK Toán 7 tập 1 - Cánh diều>
So sánh: ...Viết kết quả của mỗi phép tính sau dưới dạng một lũy thừa của a:
Tổng hợp đề thi giữa kì 1 lớp 7 tất cả các môn - Cánh diều
Toán - Văn - Anh - Khoa học tự nhiên
Hoạt động 3
So sánh: \({\left( {{{15}^3}} \right)^2}\) và \({15^{3.2}}\).
Phương pháp giải:
\({x^n} = \underbrace {x.x \ldots .x}_{n{\rm{ }}}{\rm{ }}\) (\(n \in {\mathbb{N}^*}\))
Lời giải chi tiết:
Ta có: \({\left( {{{15}^3}} \right)^2}\) = 153 . 153 = 153+3 = 156
\({15^{3.2}}\) = 156
Vậy \({\left( {{{15}^3}} \right)^2}\) = \({15^{3.2}}\)
Luyện tập vận dụng 4
Viết kết quả của mỗi phép tính sau dưới dạng một lũy thừa của a:
a)\({\left[ {{{\left( { - \frac{1}{6}} \right)}^3}} \right]^4}\) với \(a = - \frac{1}{6}\).
b)\({\left[ {{{\left( { - 0,2} \right)}^4}} \right]^5}\) với \(a = - 0,2\).
Phương pháp giải:
\({\left( {{x^m}} \right)^n} = {x^{m.n}}\left( {m,n \in \mathbb{N}} \right)\)
Lời giải chi tiết:
a)\({\left[ {{{\left( { - \frac{1}{6}} \right)}^3}} \right]^4}\) (với \(a = - \frac{1}{6}\))
\(=(- \frac{1}{6})^{3. 4}=(- \frac{1}{6})^{12}\)
b)\({\left[ {{{\left( { - 0,2} \right)}^4}} \right]^5}\) (với \(a = - 0,2\))
\(=(-0,2)^{4.5}=(-0,2)^{20}\)
- Giải bài 1 trang 20 SGK Toán 7 tập 1 - Cánh diều
- Giải bài 2 trang 20 SGK Toán 7 tập 1 - Cánh diều
- Giải bài 3 trang 20 SGK Toán 7 tập 1 - Cánh diều
- Giải bài 4 trang 20 SGK Toán 7 tập 1 - Cánh diều
- Giải bài 5 trang 20 SGK Toán 7 tập 1 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Tạo đồ dùng dạng hình lăng trụ đứng SGK Toán 7 Cánh diều tập 1
- Giải câu hỏi trang 39, 40 SGK Toán 7 Cánh diều tập 2
- Lý thuyết Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh SGK Toán 7 - Cánh diều
- Tạo đồ dùng dạng hình lăng trụ đứng SGK Toán 7 Cánh diều tập 1
- Giải câu hỏi trang 39, 40 SGK Toán 7 Cánh diều tập 2
- Lý thuyết Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh SGK Toán 7 - Cánh diều