Câu 9 trang 17 SGK Đại số và Giải tích 11 Nâng cao

Bình chọn:
3.5 trên 4 phiếu

Cho hàm số y = f(x) = Asin(ωx + ∝) (A, ω và ∝ là những hằng số ; A và ω khác 0). Chứng minh rằng với mỗi số nguyên k

Bài 9. Cho hàm số \(y = f(x) = A\sin(ωx + ∝)\) (\(A, ω\) và \(∝\) là những hằng số ; \(A\) và \(ω\) khác \(0\)). Chứng minh rằng với mỗi số nguyên \(k\)), ta có \(f\left( {x + k.{{2\pi } \over \omega }} \right) = f\left( x \right)\) với mọi \(x\).

Giải

Với \(k \in \mathbb Z\) ta có :

\(\eqalign{
& f\left( {x + k.{{2\pi } \over \omega }} \right) = A\sin \left[ {\omega \left( {x + k{{2\pi } \over \omega }} \right) + \alpha } \right] \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = A\sin \left( {\omega x + \alpha + k2\pi } \right) = A\sin \left( {\omega x + \alpha } \right) = f\left( x \right) \cr} \)

 Loigiaihay.com

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan