

Câu 12 trang 17 SGK Đại số và Giải tích 11 Nâng cao
a. Từ đồ thị của hàm số y = cosx, hãy suy ra đồ thị của các hàm số sau và vẽ đồ thị của các hàm số đó :
a. Từ đồ thị của hàm số y=cosxy=cosx, hãy suy ra đồ thị của các hàm số sau và vẽ đồ thị của các hàm số đó:
y=cosx+2y=cosx+2
y=cos(x−π4)y=cos(x−π4)
b. Hỏi mỗi hàm số đó có phải là hàm số tuần hoàn không ?
LG a
Từ đồ thị của hàm số y=cosxy=cosx, hãy suy ra đồ thị của các hàm số sau và vẽ đồ thị của các hàm số đó:
y=cosx+2y=cosx+2
y=cos(x−π4)y=cos(x−π4)
Phương pháp giải:
Sử dụng lý thuyết tịnh tiến đồ thị:
Cho hàm số y=f(x) có đồ thị (C). Khi đó,
+) Hàm số y=f(x)+p có được do tịnh tiến (C) lên trên p đơn vị (p > 0)
+) Hàm số y=f(x-q) có được do tịnh tiến (C) sang phải q đơn vị (q > 0)
Lời giải chi tiết:
Đồ thị của hàm số y=cosx+2y=cosx+2 có được do tịnh tiến đồ thị của hàm số y=cosxy=cosx lên trên một đoạn có độ dài bằng 22
Đồ thị của hàm số y=cos(x−π4)y=cos(x−π4) có được do tịnh tiến đồ thị của hàm số y = cosx sang phải một đoạn có độ dài π4π4
LG b
Hỏi mỗi hàm số đó có phải là hàm số tuần hoàn không ?
Lời giải chi tiết:
Các hàm số trên đều là hàm tuần hoàn vì:
nếu f(x)=cosx+2f(x)=cosx+2 thì f(x+2π)=cos(x+2π)+2f(x+2π)=cos(x+2π)+2
=cosx+2=f(x),∀x∈R
Và nếu g(x)=cos(x−π4) thì:
g(x+2π)=cos(x+2π−π4)
=cos(x−π4)=g(x) , ∀x∈R
Loigiaihay.com


- Câu 13 trang 17 SGK Đại số và Giải tích 11 Nâng cao
- Câu 11 trang 17 SGK Đại số và Giải tích 11 Nâng cao
- Câu 10 trang 17 SGK Đại số và Giải tích 11 Nâng cao
- Câu 9 trang 17 SGK Đại số và Giải tích 11 Nâng cao
- Câu 8 trang 16 SGK Đại số và Giải tích 11 Nâng cao
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |