Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 1. Các hàm số lượng giác
Câu 4 trang 14 SGK Đại số và Giải tích 11 Nâng cao>
Cho các hàm số f(x) = sinx, g(x) = cosx, h(x) = tanx và các khoảng
Đề bài
Cho các hàm số \(f(x) = \sin x,\) \( g(x) = \cos x,\) \( h(x) = \tan x\) và các khoảng
\({J_1} = \left( {\pi ;{{3\pi } \over 2}} \right);{J_2} = \left( { - {\pi \over 4};{\pi \over 4}} \right);\) \({J_3} = \left( {{{31\pi } \over 4};{{33\pi } \over 4}} \right);{J_4} = \left( { - {{452\pi } \over 3};{{601\pi } \over 4}} \right)\)
Hỏi hàm số nào trong ba hàm số trên đồng biến trên khoảng \(J_1\) ? Trên khoảng \(J_2\) ? Trên khoảng \(J_3\) ? Trên khoảng \(J_4\) ? (Trả lời bằng cách lập bảng).
Phương pháp giải - Xem chi tiết
Sử dụng lí thuyết:
Hàm số \(y = \sin x\) đồng biến trên \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) và nghịch biến trên \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\)
Hàm số \(y = \cos x\) đồng biến trên \(\left( { - \pi + k2\pi ;k2\pi } \right)\) và nghịch biến trên \(\left( {k2\pi ;\pi + k2\pi } \right)\)
Hàm số \(y = \tan x\) đồng biến trên \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\).
Lời giải chi tiết
Ta có:
+) \({J_1} = \left( {\pi ;\frac{{3\pi }}{2}} \right) \subset \left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right)\) nên hàm số \(y = \sin x\) nghịch biến trên \({J_1}\), hàm số \(y = \tan x\) đồng biến trên \({J_1}\).
\({J_1} = \left( {\pi ;\frac{{3\pi }}{2}} \right) \subset \left( {\pi ;2\pi } \right)\) nên hàm số \(y = \cos x\) đồng biến trên \({J_1}\)
+) \({J_2} = \left( { - \frac{\pi }{4};\frac{\pi }{4}} \right) \subset \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) nên hàm số \(y = \sin x\) đồng biến trên \({J_2}\), hàm số \(y = \tan x\) đồng biến trên \({J_2}\).
\({J_2} = \left( { - \frac{\pi }{4};\frac{\pi }{4}} \right)\)\( = \left( { - \frac{\pi }{4};0} \right) \cup \left[ {0;\frac{\pi }{4}} \right)\) nên hàm số \(y = \cos x\) chỉ đồng biến trên \(\left( {\frac{\pi }{4};0} \right)\) và nghịch biến trên \(\left( {0;\frac{\pi }{4}} \right)\) nên hàm số \(y = \cos x\) không đồng biến trên \({J_2}\)
+) \({J_3} = \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} \right)\) \( = \left( {8\pi - \frac{\pi }{4};8\pi + \frac{\pi }{4}} \right)\) nên hàm số \(y = \sin x\) đồng biến trên \({J_3}\), hàm số \(y = \tan x\) đồng biến trên \({J_3}\), hàm số \(y = \cos x\) không đồng biến trên \({J_3}\)
+) \({J_4} = \left( { - \frac{{452\pi }}{3};\frac{{601\pi }}{4}} \right)\) \( = \left( { - 150\pi - \frac{{2\pi }}{3}; - 150\pi - \frac{\pi }{4}} \right)\) nên hàm số \(y = \sin x\), \(y = \tan x\) không đồng biến trên \({J_4}\), hàm số \(y = \cos x\) đồng biến trên \({J_4}\)
Ta có bảng sau, trong đó dấu “ +” có nghĩa “đồng biến”, dấu “0” có nghĩa “không đồng biến” :
|
Hàm số |
J1 |
J2 |
J3 |
J4 |
|
\(f(x) = \sin x\) |
0 |
+ |
+ |
0 |
|
\(g(x) = \cos x\) |
+ |
0 |
0 |
+ |
|
\(h(x) = \tan x\) |
+ |
+ |
+ |
0 |
Loigiaihay.com




