Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 1. Các hàm số lượng giác
Câu 7 trang 16 SGK Đại số và Giải tích 11 Nâng cao>
Xét tính chẵn – lẻ của mỗi hàm số sau :
Xét tính chẵn – lẻ của mỗi hàm số sau :
a. \(y = \cos \left( {x - {\pi \over 4}} \right)\)
b. \(y = \tan \left| x \right|\)
c. \(y = \tan x - \sin 2x.\)
LG a
\(y = \cos \left( {x - {\pi \over 4}} \right)\)
Lời giải chi tiết:
Ta có:
\(\eqalign{
& f\left( x \right) = \cos \left( {x - {\pi \over 4}} \right)\cr&f\left( {{\pi \over 4}} \right) = 1,f\left( { - {\pi \over 4}} \right) = 0 \cr
& f\left( { - {\pi \over 4}} \right) \ne f\left( {{\pi \over 4}} \right)\cr& \text{và }f\left( { - {\pi \over 4}} \right) \ne - f\left( {{\pi \over 4}} \right) \cr} \)
Nên \(y = \cos \left( {x - {\pi \over 4}} \right)\) không phải là hàm số chẵn cũng không phải là hàm số lẻ.
LG b
\(y = \tan \left| x \right|\)
Lời giải chi tiết:
\(f(x) = \tan|x|\).
Tập xác định \(D =\mathbb R \backslash \left\{ {{\pi \over 2} + k\pi ,k \in \mathbb Z} \right\}\)
\(x \in D ⇒ -x \in D\) và \(f(-x) = \tan |-x| = \tan |x| = f(x)\)
Do đó \(y = \tan |x|\) là hàm số chẵn.
LG c
\(y = \tan x - \sin 2x.\)
Lời giải chi tiết:
\(f(x) = \tan x – \sin 2x\).
Tập xác định \(D =\mathbb R \backslash \left\{ {{\pi \over 2} + k\pi ,k \in\mathbb Z} \right\}\)
\(x \in D ⇒ -x \in D\) và \(f(-x) = \tan(-x) – \sin(-2x)\)
\(= -\tan x + \sin 2x = -(\tan x – \sin 2x)\)
\(= -f(x)\)
Do đó \(y = \tan x – \sin 2x\) là hàm số lẻ.
Loigiaihay.com




