Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Câu hỏi và bài tập ôn tập chương IV
Câu 61 trang 178 SGK Đại số và Giải tích 11 Nâng cao>
Tìm các giá trị của tham số m để hàm số
Đề bài
Tìm các giá trị của tham số m để hàm số
\(f\left( x \right) = \left\{ {\matrix{{{{{x^2} - 3x + 2} \over {{x^2} - 2x}}\,\text{ với }\,x < 2} \cr {mx + m + 1\,\text{ với }\,x \ge 2} \cr} } \right.\)
Liên tục tại điểm \(x = 2\)
Phương pháp giải - Xem chi tiết
f liên tục tại \(x = 2\)
\(⇔ \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = f\left( 2 \right) \)
Lời giải chi tiết
Ta có:
\(\eqalign{
& \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {mx + m + 1} \right) \cr &= 3m + 1 = f\left( 2 \right) \cr
& \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} {{{x^2} - 3x + 2} \over {{x^2} - 2x}}\cr& = \mathop {\lim }\limits_{x \to {2^ - }} {{\left( {x - 1} \right)\left( {x - 2} \right)} \over {x\left( {x - 2} \right)}} \cr &= \mathop {\lim }\limits_{x \to {2^ - }} {{x - 1} \over x} = {1 \over 2} \cr} \)
f liên tục tại mọi \(x ≠ 2\). Do đó :
f liên tục trên \(\mathbb R ⇔\) f liên tục tại \(x = 2\)
\(⇔ \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = f\left( 2 \right) \)
\(\Leftrightarrow 3m + 1 = {1 \over 2} \Leftrightarrow m = - {1 \over 6}\)
Loigiaihay.com




