Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Câu hỏi và bài tập ôn tập chương IV
Câu 58 trang 178 SGK Đại số và Giải tích 11 Nâng cao>
Tìm giới hạn của dãy số (un) xác định bởi
Đề bài
Tìm giới hạn của dãy số (un) xác định bởi
\({u_n} = {1 \over {1.2}} + {1 \over {2.3}} + ... + {1 \over {n\left( {n + 1} \right)}}.\)
Hướng dẫn : Với mỗi số nguyên dương k, ta có
\({1 \over {k\left( {k + 1} \right)}} = {1 \over k} - {1 \over {k + 1}}\)
Phương pháp giải - Xem chi tiết
Với mỗi số nguyên dương k, ta có
\({1 \over {k\left( {k + 1} \right)}} = {1 \over k} - {1 \over {k + 1}}\)
Lời giải chi tiết
\({u_n} = \left( {1 - {1 \over 2}} \right) + \left( {{1 \over 2} - {1 \over 3}} \right) + ... \)
\(+ \left( {{1 \over {n - 1}}}-{1 \over n} \right) + \left( {{1 \over n} - {1 \over {n + 1}}} \right) \) \(= 1 - {1 \over {n + 1}}\)
Do đó \(\lim {u_n} = \lim \left( {1 - {1 \over {n + 1}}} \right) = 1\)
Loigiaihay.com




