Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 6. Biến ngẫu nhiên rời rạc
Câu 47 trang 91 SGK Đại số và Giải tích 11 Nâng cao>
Tính kỳ vọng, phương sai và độ lệch chuẩn của biến ngẫu nhiên rời rạc X trong bài tập 44 (tính chính xác đến hàng phần trăm).
Đề bài
Tính kỳ vọng, phương sai và độ lệch chuẩn của biến ngẫu nhiên rời rạc X trong bài tập 44 (tính chính xác đến hàng phần trăm).
Lời giải chi tiết
Ta có: X = {0, 1, 2, 3}
Bảng phân bố xác suất của X là:
|
X |
0 |
1 |
2 |
3 |
|
P |
\({1 \over 8}\) |
\({3 \over 8}\) |
\({3 \over 8}\) |
\({1 \over 8}\) |
Kỳ vọng của X là :
\(E\left( X \right) = {x_1}{p_1} + {x_2}{p_2} + {x_3}{p_3} + {x_4}{p_4} \)
\(= 0.{1 \over 8} + 1.{3 \over 8} + 2.{3 \over 8} + 3.{1 \over 8} = 1,5\)
Phương sai của X là :
\(V\left( X \right) = {\left( {{x_1} - 1,5} \right)^2}{p_1} + {\left( {{x_2} - 1,5} \right)^2}{p_2} \) \(+ {\left( {{x_3} - 1,5} \right)^2}{p_3} + {\left( {{x_4} - 1,5} \right)^2}{p_4} = 0,75\)
Độ lệch chuẩn của X là: \(\sigma \left( X \right) = \sqrt {V\left( X \right)} \approx 0,87\)
Loigiaihay.com




