Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 3. Đạo hàm của các hàm số lượng giác
Câu 35 trang 212 SGK Đại số và Giải tích 11 Nâng cao>
Giải phương trình y’ = 0 trong mỗi trường hợp sau :
Giải phương trình y’ = 0 trong mỗi trường hợp sau :
LG a
y = sin2x - 2cosx
Lời giải chi tiết:
Với mọi \(x \in\mathbb R\), ta có:
\(y' = 2\cos 2x + 2\sin x\) \( = 2\left( {1 - 2{{\sin }^2}x} \right) + 2\sin x\)
\(=-4{{\sin }^2}x+2\sin x+2\)
Vậy \(y' = 0 \Leftrightarrow 2{\sin ^2}x - \sin x - 1 = 0\)
\( \Leftrightarrow \left[ {\matrix{ {\sin x = 1} \cr {\sin x = -{1 \over 2}} \cr } } \right. \) \(\Leftrightarrow \left[ {\matrix{ {x = {\pi \over 2} + k2\pi } \cr {x = - {\pi \over 6} + k2\pi } \cr {x = {{7\pi } \over 6} + k2\pi } \cr }\left( {k \in \mathbb Z} \right) } \right.\)
LG b
y = 3sin2x + 4cos2x + 10x
Lời giải chi tiết:
Với mọi \(x \in\mathbb R\), ta có: \(y' = 6\cos 2x - 8\sin 2x + 10\)
Vậy \(y' = 0\) \( \Leftrightarrow 6\cos 2x - 8\sin 2x + 10 = 0 \) \(\Leftrightarrow 3\cos 2x - 4\sin 2x + 5 = 0\) \( \Leftrightarrow 4\sin 2x - 3\cos 2x = 5\)
\( \Leftrightarrow {4 \over 5}\sin 2x - {3 \over 5}\cos 2x = 1\,\,\left( 1 \right)\)
Vì \({\left( {{4 \over 5}} \right)^2} + {\left( {{3 \over 5}} \right)^2} = 1\) nên có số \(α\) sao cho \(\cos \alpha = {4 \over 5}\,\text{ và }\,\sin \alpha = {3 \over 5}\)
Thay vào (1), ta được :
\(\eqalign{ & \sin 2x\cos \alpha - \sin\alpha \cos 2x = 1 \cr & \Leftrightarrow \sin \left( {2x - \alpha } \right) = 1 \cr & \Leftrightarrow 2x - \alpha = {\pi \over 2} + k2\pi \cr & \Leftrightarrow x = {1 \over 2}\left( {\alpha + {\pi \over 2} + k2\pi } \right)\,\,\left( {k \in\mathbb Z} \right) \cr} \)
LG c
\(y = {\cos ^2}x + \sin x\)
Lời giải chi tiết:
Với mọi \(x \in\mathbb R\), ta có: \(y' = - 2\cos x{\mathop{\rm sinx}\nolimits} + cosx \) \(= cosx\left( {1 - 2\sin x} \right)\)
\(\eqalign{ & y' = 0 \Leftrightarrow \cos x\left( {1 - 2\sin x} \right) = 0\cr & \Leftrightarrow \left[ {\matrix{ { \cos x = 0 } \cr {1 - 2\sin x = 0 } \cr } } \right. \cr & \Leftrightarrow \left[ {\matrix{ {x = {\pi \over 2} + k\pi} \cr {{\mathop{\rm sinx}\nolimits} = {1 \over 2} \Leftrightarrow \left[ {\matrix{ {x = {\pi \over 6} + k2\pi } \cr {x = {{5\pi } \over 6} + k2\pi } \cr } } \right. } \cr } } \right. \cr} \)
Vậy \(x = {\pi \over 2} + k\pi ;x = {\pi \over 6} + k2\pi ;\) \(x = {{5\pi } \over 6} + k2\pi \left( {k \in\mathbb Z} \right)\)
LG d
\(y = \tan x + \cot x\)
Lời giải chi tiết:
\(\eqalign{ & y' = {1 \over {{{\cos }^2}x}} - {1 \over {{{\sin }^2}x}}\,\forall\,x \ne k{\pi \over 2} \cr & y' = 0 \Leftrightarrow {1 \over {{{\cos }^2}x}} = {1 \over {{{\sin }^2}x}} \cr & \Leftrightarrow {\sin ^2}x = {\cos ^2}x\cr &\Leftrightarrow {\tan ^2}x = 1 \cr & \Leftrightarrow \tan x = \pm 1 \Leftrightarrow x = \pm {\pi \over 4} + k\pi \cr &k \in \mathbb Z \cr} \)
Loigiaihay.com




