

Câu 35 trang 118 SGK Hình học 11 Nâng cao
Cho tứ diện ABCD. Chứng minh rằng nếu AC = BD, AD = BC thì đường vuông góc chung của AB và CD là đường thẳng nối trung điểm của AB và CD. Điều ngược lại có đúng không ?
Đề bài
Cho tứ diện ABCD. Chứng minh rằng nếu AC = BD, AD = BC thì đường vuông góc chung của AB và CD là đường thẳng nối trung điểm của AB và CD. Điều ngược lại có đúng không ?
Lời giải chi tiết
a. Vì AC = BD, AD = BC nên tam giác ACD bằng tam giác BDC, từ đó hai trung tuyến tương ứng AJ và BJ bằng nhau (ở đó J là trung điểm của CD). Gọi I là trung điểm của AB thì ta có JI ⊥ AB.
Tương tự như trên ta cũng có JI ⊥ CD. Vậy JI là đường vuông góc chung của AB và CD.
b. Điều ngược lại của kết luận nêu ra trong bài toán cũng đúng, tức là nếu IJ ⊥ AB, IJ ⊥ CD, I, J lần lượt là trung điểm của AB và CD thì AC = BD; AD = BC.
Thật vậy, vì IJ ⊥ AB, I là trung điểm của AB nên AJ = BJ. Mặt khác :
AC2+AD2=2AJ2+CD22BC2+BD2=2BJ2+CD22
Từ đó ta có : AC2+AD2=BC2+BD2 (1)
Tương tự như trên ta cũng có :
CB2+CA2=DB2+DA2(2)
Từ (1) và (2) ta suy ra AD2−BC2=BC2−DA2, tức là DA = BC và từ (1) ta cũng có AC = BD.
Loigiaihay.com


- Câu 34 trang 118 SGK Hình học 11 Nâng cao
- Câu 33 trang 118 SGK Hình học 11 Nâng cao
- Câu 32 trang 117 SGK Hình học 11 Nâng cao
- Câu 31 trang 117 SGK Hình học 11 Nâng cao
- Câu 30 trang 117 SGK Hình học 11 Nâng cao
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |