Câu 1 trang 120 SGK Hình học 11 Nâng cao


Tứ diện OABC có OA = OB = OC = a và

Đề bài

Tứ diện OABC có OA = OB = OC = a và \(\widehat {AOB} = \widehat {AOC} = 60^\circ ,\widehat {BOC} = 90^\circ \)

a. Chứng tỏ rằng ABC là tam giác vuông và OA ⊥ BC

b. Tìm đường vuông góc chung IJ của OA và BC ; tính khoảng cách giữa hai đường thẳng OA và BC.

c. Chứng minh rằng hai mặt phẳng (ABC) và (OBC) vuông góc với nhau.

Lời giải chi tiết

a. Vì \(\widehat {AOB} = \widehat {AOC} = 60^\circ \)

OA = OB = OC = a

Nên AB = AC = a

Suy ra ΔABC = ΔOBC

Vậy tam giác ABC vuông cân tại A

Gọi J là trung điểm của BC thì OJ ⊥ BC, AJ ⊥ BC nên OA ⊥ BC.

Cách khác:

b. Gọi I là trung điểm của OA, do OJ = AJ nên JI ⊥ OA, mà JI ⊥ BC, vậy IJ là đường vuông góc chung của OA và BC.

\(I{J^2} = O{J^2} - O{I^2} = {\left( {{{a\sqrt 2 } \over 2}} \right)^2} - {\left( {{a \over 2}} \right)^2} = {{{a^2}} \over 4}.\)

Suy ra : d(OA ; BC) = \({a \over 2}\)

c. Từ các kết quả trên ta có : OJ ⊥ BC, AJ ⊥ BC, IJ = \({1 \over 2}OA\)

Vậy góc giữa mp(OBC) và mp(ABC) bằng góc \(\widehat {OJA}\) và \(\widehat {OJA} = 90^\circ ,\) do đó mp(OBC) ⊥ mp(ABC).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu
  • Câu 2 trang 120 SGK Hình học 11 Nâng cao

    Cho hình chóp S.ABC có SA = Sb = SC = a,

  • Câu 3 trang 120 SGK Hình học 11 Nâng cao

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA ⊥ (ABCD). Hai điểm M và N lần lượt thay đổi trên cạnh CB và CD, đặt CM =x, CN = y. Tìm hệ thức liên hệ giữa x và y để :

  • Câu 4 trang 120 SGK Hình học 11 Nâng cao

    Tam giác ABC vuông có cạnh huyền BC nằm trong mp(P), cạnh AB và AC lần lượt tạo với mp(P) các góc β và γ. Gọi α là góc tạo bởi mp(P) và mp(ABC). Chứng minh rằng

  • Câu 5 trang 120 SGK Hình học 11 Nâng cao

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Gọi H là hình chiếu của O trên mặt phẳng (ABC). Tính diện tích các tam giác HAB, HBC và HCA.

  • Câu 6 trang 120 SGK Hình học 11 Nâng cao

    Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại đỉnh C, CA = a, CB = b ; mặt bên ABB’A’ là hình vuông. Gọi P là mặt phẳng đi qua C và vuông góc với AB’.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí