Câu 34 trang 42 SGK Đại số và Giải tích 11 Nâng cao

Bình chọn:
3.7 trên 3 phiếu

Sử dụng công thức biến đổi tổng thành tích hoặc tích thành tổng để giải các phương trình sau :

Bài 34. Sử dụng công thức biến đổi tổng thành tích hoặc tích thành tổng để giải các phương trình sau :

a. \(\cos x\cos 5x = \cos 2x\cos 4x\) ;

b. \(\cos 5x\sin 4x=\cos 3x\sin 2x\) ;

c. \(\sin 2x + \sin 4x = \sin 6x\) ;

d. \(sin x + \sin 2x = \cos x + \cos 2x\)

Giải

a. Ta có:

\(\eqalign{& \cos x\cos 5x = \cos 2x\cos 4x \cr & \Leftrightarrow {1 \over 2}\left( {\cos 6x + \cos 4x} \right) = {1 \over 2}\left( {\cos 6x + \cos 2x} \right) \Leftrightarrow \cos 4x = \cos 2x \cr & \Leftrightarrow \left[ {\matrix{{4x = 2x + k2\pi } \cr {4x = - 2x + k2\pi } \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k\pi } \cr {x = k{\pi \over 3}} \cr} } \right. \Leftrightarrow x = k{\pi \over 3} \,\,(k\in\mathbb Z)\cr} \) 

b.

\(\eqalign{& \cos 5x\sin 4x = \cos 3x\sin 2x \Leftrightarrow {1 \over 2}\left( {\sin 9x - \sin x} \right) = {1 \over 2}\left( {\sin 5x - \sin x} \right) \cr & \Leftrightarrow \sin 9x = \sin 5x \Leftrightarrow \left[ {\matrix{{9x = 5x + k2\pi } \cr {9x = \pi - 5x + k2\pi } \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k{\pi \over 2}} \cr {x = {\pi \over {14}} + k{\pi \over 7}} \cr} } \,\,(k\in\mathbb Z) \right. \cr} \)

c.

\(\eqalign{& \sin 2x + \sin 4x = \sin 6x \Leftrightarrow 2\sin 3x\cos x = 2\sin 3x\cos 3x \cr & \Leftrightarrow \sin 3x\left( {\cos x - \cos 3x} \right) = 0 \Leftrightarrow \left[ {\matrix{{\sin 3x = 0} \cr {\cos x = \cos 3x} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k{\pi \over 3}} \cr {x = k\pi } \cr {x = k{\pi \over 2}} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k{\pi \over 3}} \cr {x = k{\pi \over 2}} \cr} }  \,\,(k\in\mathbb Z)\right. \cr} \) 

d.

\(\eqalign{& \sin x + \sin 2x = \cos x + \cos 2x \Leftrightarrow 2\sin {{3x} \over 2}\cos {x \over 2} = 2\cos {{3x} \over 2}\cos {x \over 2} \cr & \Leftrightarrow \cos {x \over 2}\left( {\sin {{3x} \over 2} - \cos {{3x} \over 2}} \right) = 0 \Leftrightarrow \left[ {\matrix{{\cos {x \over 2} = 0} \cr {\sin {{3x} \over 2} = \cos {{3x} \over 2}} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{{x \over 2} = {\pi \over 2} + k\pi } \cr {\tan {{3x} \over 2} = 1} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = \pi + k2\pi } \cr {x = {\pi \over 6} + k{{2\pi } \over 3}} \cr} } \right.\left( {k \in\mathbb Z} \right) \cr} \)

 Loigiaihay.com

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan