Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 3. Đạo hàm của các hàm số lượng giác
Câu 28 trang 211 SGK Đại số và Giải tích 11 Nâng cao>
Tìm các giới hạn sau :
Tìm các giới hạn sau :
LG a
\(\mathop {\lim }\limits_{x \to 0} {{\tan 2x} \over {\sin 5x}}\)
Phương pháp giải:
Sử dụng giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to 0} {{\tan 2x} \over {\sin 5x}} \) \(= \mathop {\lim }\limits_{x \to 0} {{\sin 2x} \over {\cos 2x.\sin 5x}} \)
\( = \mathop {\lim }\limits_{x \to 0} \left[ {\frac{{\sin 2x}}{{2x}}.\frac{{2x}}{{\cos 2x\sin 5x}}} \right] \) \(= \mathop {\lim }\limits_{x \to 0} \left[ {\frac{1}{{\cos 2x}}.\frac{{\sin 2x}}{{2x}}.\frac{{\frac{{2x}}{{5x}}}}{{\frac{{\sin 5x}}{{5x}}}}} \right] \) \(= \mathop {\lim }\limits_{x \to 0} \left[ {\frac{2}{{5\cos 2x}}.\frac{{\sin 2x}}{{2x}}.\frac{1}{{\frac{{\sin 5x}}{{5x}}}}} \right] \) \( = \frac{2}{{5\cos 0}}.1.1 = \frac{2}{5}\)
LG b
\(\mathop {\lim }\limits_{x \to 0} {{1 - {{\cos }^2}x} \over {x\sin 2x}}\)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to 0} {{1 - {{\cos }^2}x} \over {x\sin 2x}} \) \(= \mathop {\lim }\limits_{x \to 0} {{{{\sin }^2}x} \over {2x\sin x\cos x}} \) \(= \mathop {\lim }\limits_{x \to 0} {{\sin x} \over {2x\cos x}} \)
\( = \mathop {\lim }\limits_{x \to 0} \left[ {\frac{1}{{2\cos x}}.\frac{{\sin x}}{x}} \right] = \frac{1}{{2\cos 0}}.1 = \frac{1}{2}\)
LG c
\(\mathop {\lim }\limits_{x \to 0} {{1 + \sin x - \cos x} \over {1 - \sin x - \cos x}}\)
Phương pháp giải:
Phân tích tử và mẫu thành nhân tử và rút gọn khử dạng vô định.
Lời giải chi tiết:
\(\eqalign{ & \mathop {\lim }\limits_{x \to 0} {{1 + \sin x - \cos x} \over {1 - \sin x - \cos x}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {1 - \cos x} \right) + \sin x}}{{\left( {1 - \cos x} \right) - \sin x}}\cr &= \mathop {\lim }\limits_{x \to 0} {{2\sin^2 {x \over 2} + 2\sin {x \over 2}\cos {x \over 2}} \over {2{{\sin }^2}{x \over 2} - 2\sin {x \over 2}\cos {x \over 2}}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{2\sin \frac{x}{2}\left( {\sin \frac{x}{2} + \cos \frac{x}{2}} \right)}}{{2\sin \frac{x}{2}\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}}\cr &= \mathop {\lim }\limits_{x \to 0} {{\sin {x \over 2} + \cos {x \over 2}} \over {\sin {x \over 2} - \cos {x \over 2}}} \cr & = \frac{{\sin 0 + \cos 0}}{{\sin 0 - \cos 0}} = \frac{1}{{ - 1}} = - 1 \cr} \)
Loigiaihay.com




