 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 3: Đường thẳng vuông góc với mặt phẳng
                                                        Bài 3: Đường thẳng vuông góc với mặt phẳng
                                                    Câu 19 trang 103 SGK Hình học 11 Nâng cao>
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a và SA = SB = SC = b. Gọi G là trọng tâm tam giác ABC.
Đề bài
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a và SA = SB = SC = b. Gọi G là trọng tâm tam giác ABC.
a. Chứng minh rằng SG ⊥ (ABC). Tính SG.
b. Xét mặt phẳng (P) đi qua A và vuông góc với đường thẳng SC. Tìm hệ thức liên hệ giữa a và b để (P) cắt SC tại điểm C1 nằm giữa S và C. Khi đó hãy tính diện tích thiết diện của hình chóp S.ABC khi cắt bởi mp(P).
Lời giải chi tiết

a. Gọi I là trung điểm của BC.
Tam giác ABC đều, AI là đường trung tuyến nên đồng thời là đường cao: BC ⊥ AI.
Tam giác SBC có SB = SC, SI là đường trung tuyến nên đồng thời là đường cao: BC ⊥ SI.
\(\begin{array}{l}
 \Rightarrow BC \bot (SAI) \supset SG\\
 \Rightarrow BC \bot SG.\,\,\, (1)
\end{array}\)
Chứng minh tương tự ta có: \(AB \bot SG\,\,\, (1)\)
Từ (1;2) suy ra \(SG \bot (ABC)\)
\(\begin{array}{l}
+) \, SI^2 ={S{C^2} - I{C^2}} ={{b^2} - \frac{{{a^2}}}{4}} \\
+) \, GI = \frac{1}{3}AI;\, AI ^2 = {A{B^2} - B{I^2}} =a.\frac{{3 }}{4} \Rightarrow GI= \frac{{a\sqrt 3 }}{6}.
\end{array}\)
\(\Rightarrow SG = \sqrt {S{I^2} - G{I^2}} = \sqrt {{b^2} - \frac{{{a^2}}}{4} - {{{a^2}} \over {12}}} \) \( = \sqrt {{{12{b^2} - 4{a^2}} \over {12}}}\) \( = \sqrt {{{3{b^2} - {a^2}} \over 3}} \)
b. Kẻ AC1 ⊥ SC thì (P) chính là mp(ABC1)
Vì SAC là tam giác cân mà AC1 ⊥ SC nên C1 nằm giữa S và C khi và chỉ khi
\(\widehat {ASC} < 90^\circ \Leftrightarrow A{S^2} + C{S^2} > A{C^2} \) \(\Leftrightarrow 2{b^2} > {a^2}\)
Ta có : AB ⊥ GC và AB ⊥ SG ⇒ AB ⊥ SC
SC ⊥ AC1 và SC ⊥ AB nên SC ⊥ (ABC1)
Thể tích tứ diện SABC là :
\(\eqalign{ & {V_{SABC}} = {1 \over 3}SG.{S_{ABC}} = {1 \over 3}SC.{S_{AB{C_1}}} \cr & \Rightarrow {S_{AB{C_1}}} = {{SG.{S_{ABC}}} \over {SC}} \cr &= {{\sqrt {{{3{b^2} - {a^2}} \over 3}} .{{{a^2}\sqrt 3 } \over 4}} \over b} = {{{a^2}\sqrt {3{b^2} - {a^2}} } \over {4b}} \cr} \)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            