
Đề bài
Cho tứ diện ABCD. Tìm điểm O cách đều bốn đỉnh của tứ diện.
Lời giải chi tiết
Gọi I là tâm đường tròn ngoại tiếp của ΔBCD
Gọi d là đường thẳng đi qua I và vuông góc với mặt phẳng (BCD)
Theo kết quả bài 14. M ϵ d ⇔ MB = MC = MD
(d gọi là trục của đường tròn ngoại tiếp tam giác BCD)
Gọi O là giao điểm của d với mặt phẳng trung trực của AB.
=> OA = OB ( vì O thuộc mặt phẳng trung trực của AB).
Và OB = OC = OD ( vì O thuộc đường thẳng d).
Suy ra :OA = OB = OC = OD hay O cách đều bốn đỉnh của tứ diện (O gọi là tâm mặt cầu ngoại tiếp tứ diện ABCD).
Loigiaihay.com
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc và AB = a, BC = b, CD = c.
Cho hình tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc.
Cho hình chóp S.ABCD có SA ⊥ mp(ABC), các tam giác ABC và SBC không vuông. Gọi H và K lần lượt là trực tâm của tam giác ABC và SBC. Chứng minh rằng :
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a và SA = SB = SC = b. Gọi G là trọng tâm tam giác ABC.
a. Cho tứ diện ABCD có AB ⊥ CD, AC ⊥ BD. Chứng minh rằng AD ⊥ BC. Vậy, các cạnh đối diện của tứ diện đó vuông góc với nhau. Tứ diện như thế gọi là tứ diện trực tâm.
Cho điểm S có hình chiếu trên mp(P) là H. Với điểm M bất kì trên (P) (M không trùng H), ta gọi đoạn thẳng SM là đường xiên, đoạn thẳng HM là hình chiếu của đường xiên đó. Chứng minh rằng :
Cho hai đường thẳng a, b và mặt phẳng (P). Các mệnh đề sau đúng hay sai ?
Khẳng định “Một đường thẳng vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì nó vuông góc với (P)” có đúng không ? Vì sao ?
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: