
Cho hình tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc.
LG a
Chứng minh tam giác ABC có ba góc nhọn.
Lời giải chi tiết:
Đặt a = OA, b = OB, c = OC. Ta có:
\(AB = \sqrt {{a^2} + {b^2}} ,BC = \sqrt {{b^2} + {c^2}} ,\) \(AC = \sqrt {{a^2} + {c^2}} \)
Áp dụng định lí cosin trong tam giác ABC ta có :
\(\cos A = {{A{B^2} + A{C^2} - B{C^2}} \over {2AB.AC}} \) \( = {{{a^2} + {b^2} + {a^2} + {c^2} - {b^2} - {c^2}} \over {2AB.AC}} = {{2{a^2}} \over {2AB.AC}} > 0\)
⇒ A nhọn. Tương tự B, C là các góc nhọn.
Vậy ΔABC có ba góc nhọn.
LG b
Chứng minh rằng hình chiếu H của điểm O trên mp(ABC) trùng với trực tâm tam giác ABC.
Lời giải chi tiết:
LG c
Chứng minh rằng \({1 \over {O{H^2}}} = {1 \over {O{A^2}}} + {1 \over {O{B^2}}} + {1 \over {O{C^2}}}\)
Lời giải chi tiết:
Loigiaihay.com
Cho hình chóp S.ABCD có SA ⊥ mp(ABC), các tam giác ABC và SBC không vuông. Gọi H và K lần lượt là trực tâm của tam giác ABC và SBC. Chứng minh rằng :
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a và SA = SB = SC = b. Gọi G là trọng tâm tam giác ABC.
a. Cho tứ diện ABCD có AB ⊥ CD, AC ⊥ BD. Chứng minh rằng AD ⊥ BC. Vậy, các cạnh đối diện của tứ diện đó vuông góc với nhau. Tứ diện như thế gọi là tứ diện trực tâm.
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc và AB = a, BC = b, CD = c.
Cho tứ diện ABCD. Tìm điểm O cách đều bốn đỉnh của tứ diện.
Cho điểm S có hình chiếu trên mp(P) là H. Với điểm M bất kì trên (P) (M không trùng H), ta gọi đoạn thẳng SM là đường xiên, đoạn thẳng HM là hình chiếu của đường xiên đó. Chứng minh rằng :
Cho hai đường thẳng a, b và mặt phẳng (P). Các mệnh đề sau đúng hay sai ?
Khẳng định “Một đường thẳng vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì nó vuông góc với (P)” có đúng không ? Vì sao ?
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: