Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 1. Các hàm số lượng giác
Câu 1 trang 14 SGK Đại số và Giải tích 11 Nâng cao>
Tìm tập xác định của mỗi hàm số sau :
Tìm tập xác định của mỗi hàm số sau :
a. \(y = \sqrt {3 - \sin x} \) ;
b. \(y = {{1 - \cos x} \over {\sin x}}\)
c. \(y = \sqrt {{{1 - \sin x} \over {1 + \cos x}}} \)
d. \(y = \tan \left( {2x + {\pi \over 3}} \right)\)
LG a
\(y = \sqrt {3 - \sin x} \) ;
Phương pháp giải:
Biểu thức \(\sqrt P \) có nghĩa khi \(P\ge 0\).
Sử dụng đánh giá \(-1 ≤ \sin x ≤ 1\).
Lời giải chi tiết:
Vì \(-1 ≤ \sin x ≤ 1\) nên:
\(\begin{array}{l}
\Rightarrow 1 \ge - \sin x \ge - 1\\
\Rightarrow 1 + 3 \ge - \sin x + 3 \ge - 1 + 3\\
\Rightarrow 4 \ge 3 - \sin x \ge 2 > 0\\
\Rightarrow 3 - \sin x > 0,\forall x \in R
\end{array}\)
Vậy tập xác định của hàm số là: \(D =\mathbb R\)
LG b
\(y = {{1 - \cos x} \over {\sin x}}\)
Phương pháp giải:
Biểu thức \(\frac{P}{Q}\) có nghĩa khi \(Q\ne 0\)
Lời giải chi tiết:
\(y = {{1 - \cos x} \over {\sin x}}\) xác định khi và chỉ khi \(\sin x ≠ 0\)
\(⇔ x ≠ kπ, k \in\mathbb Z\)
Vậy tập xác định \(D =\mathbb R \backslash \left\{ kπ , k \in \mathbb Z\right\}\)
LG c
\(y = \sqrt {{{1 - \sin x} \over {1 + \cos x}}} \)
Phương pháp giải:
Biểu thức \(\sqrt {\frac{P}{Q}} \) xác định khi
\(\left\{ \begin{array}{l}
\frac{P}{Q} \ge 0\\
Q \ne 0
\end{array} \right.\)
Lời giải chi tiết:
ĐK: \(\left\{ \begin{array}{l}\frac{{1 - \sin x}}{{1 + \cos x}} \ge 0\\1 + \cos x \ne 0\end{array} \right.\left( * \right)\)
Ta có:
\( - 1 \le \sin x \le 1 \Rightarrow 1 - \sin x \ge 0\) với mọi \(x\).
\( - 1 \le \cos x \le 1 \Rightarrow 1 + \cos x \ge 0\) với mọi \(x\).
\( \Rightarrow \frac{{1 + \sin x}}{{1 + \cos x}} \ge 0\) với mọi \(x\).
Do đó \(\left( * \right) \Leftrightarrow 1 + \cos x \ne 0\)
\( \Leftrightarrow \cos x \ne - 1 \Leftrightarrow x \ne \pi + k2\pi \)
Vậy tập xác định \(D =\mathbb R\backslash\left\{ π + k2π , k \in\mathbb Z\right\}\)
LG d
\(y = \tan \left( {2x + {\pi \over 3}} \right)\)
Phương pháp giải:
Hàm số \(y = \tan u\) xác định khi và chỉ khi \(u \ne \frac{\pi }{2} + k\pi \)
Lời giải chi tiết:
\(y = \tan \left( {2x + {\pi \over 3}} \right)\) xác định
⇔ \(\cos \left( {2x + {\pi \over 3}} \right) \ne 0\)
\( \Leftrightarrow 2x + {\pi \over 3} \ne {\pi \over 2} + k\pi\)
\( \Leftrightarrow 2x \ne \frac{\pi }{6} + k\pi \)
\(\Leftrightarrow x\ne {\pi \over {12}} + k{\pi \over 2},k \in \mathbb Z\)
Vậy tập xác định \(D =\mathbb R\backslash \left\{ {{\pi \over {12}} + k{\pi \over 2},k \in\mathbb Z} \right\}\)
Loigiaihay.com




