Bài 84 trang 156 SGK Đại số 10 nâng cao


Giải các phương trình sau

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau

LG a

\(|x^2– 2x – 3| = 2x + 2\)

Phương pháp giải:

Áp dụng 

\(\left| f \right| = g \Leftrightarrow \left\{ \begin{array}{l}
g \ge 0\\
f = \pm g
\end{array} \right.\)

Lời giải chi tiết:

Điều kiện: \(2x + 2 \ge 0 \Leftrightarrow x \ge  - 1\).

Ta có:

\(\eqalign{
& \left| {{x^2}-2x-3} \right| = 2x + {\rm{ }}2\cr& \Leftrightarrow \left[ \matrix{
{x^2}-2x-3 = 2x + 2 \hfill \cr 
{x^2}-2x-3 = - 2x - 2 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
{x^2} - 4x - 5 = 0 \hfill \cr 
{x^2} - 1 = 0 \hfill \cr} \right. \cr &\Leftrightarrow \left[ \matrix{
x = - 1;\,x = 5 \hfill \cr 
x = \pm 1 \hfill \cr} \right. (\text{nhận})\cr} \)

Vậy S = {-1, 1, 5}

LG b

\(\sqrt {{x^2} - 4}  = 2(x - \sqrt 3 )\)

Phương pháp giải:

Áp dụng 

\(\sqrt f = g \Leftrightarrow \left\{ \begin{array}{l}
g \ge 0\\
f = {g^2}
\end{array} \right.\)

Lời giải chi tiết:

Ta có:

\(\sqrt {{x^2} - 4} = 2(x - \sqrt 3 )\)

\( \Leftrightarrow \left\{ \begin{array}{l}
2\left( {x - \sqrt 3 } \right) \ge 0\\
{x^2} - 4 = 4{\left( {x - \sqrt 3 } \right)^2}
\end{array} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x \ge \sqrt 3 \hfill \cr 
{x^2} - 4 = 4({x^2} - 2\sqrt 3 + 3) \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
x \ge \sqrt 3 \hfill \cr 
3{x^2} - 8\sqrt 3 + 16 = 0 \hfill \cr} \right.\)

\(\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
x \ge \sqrt 3 \\
{\left( {\sqrt 3 x - 4} \right)^2} = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ge \sqrt 3 \\
\sqrt 3 x - 4 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ge \sqrt 3 \\
x = \frac{4}{{\sqrt 3 }} = \frac{{4\sqrt 3 }}{3}
\end{array} \right.\\
\Leftrightarrow x = \frac{{4\sqrt 3 }}{3}
\end{array}\)

Vậy \(S = {\rm{\{ }}{{4\sqrt 3 } \over 3}{\rm{\} }}\)

Loigiaihay.com


Bình chọn:
3.7 trên 14 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!