 Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
                         Câu hỏi và bài tập ôn tập chương 4
                                                        Câu hỏi và bài tập ôn tập chương 4
                                                    Bài 78 trang 155 SGK Đại số 10 nâng cao>
Tìm giá trị nhỏ nhất của các hàm số sau
Tìm giá trị nhỏ nhất của các hàm số sau
LG a
\(f(x) = |x + {1 \over x}|\)
Phương pháp giải:
Áp dụng BĐT Cô - si cho hai số dương \(a + b \ge 2\sqrt {ab} \)
Lời giải chi tiết:
Vì với mọi x ≠ 0; x và \({1 \over x}\) cùng dấu nên:
\(f(x) = |x + {1 \over x}| = |x| + {1 \over {|x|}} \)
Áp dụng BĐT Cô - si cho hai số dương \(|x|, {1 \over {|x|}}\) ta có:
\(|x| + {1 \over {|x|}} \ge 2\sqrt {|x|.{1 \over {|x|}}} = 2\) với mọi x ≠ 0 hay \(f(x)\ge 2\) với mọi x ≠ 0.
Dấu “=” xảy ra khi và chỉ khi: \(|x| = {1 \over {|x|}} \Leftrightarrow x^2 = 1\) \(\Leftrightarrow x = \pm 1\)
Vậy giá trị nhỏ nhất của f(x) là 2.
LG b
\(g(x) = {{{x^2} + 2} \over {\sqrt {{x^2} + 1} }}\)
Phương pháp giải:
Thu gọn g(x) rồi áp dụng BĐT Cô - si.
Lời giải chi tiết:
Với mọi x ∈ R, ta có:
\( g(x) = {{{x^2} + 1} \over {\sqrt {{x^2} + 1} }} + {1 \over {\sqrt {{x^2} + 1} }} \)
\(= \sqrt {{x^2} + 1} + {1 \over {\sqrt {{x^2} + 1} }}\)
Áp dụng BĐT cho hai số dương \(\sqrt {{x^2} + 1} , {1 \over {\sqrt {{x^2} + 1} }}\) ta có:
\(\sqrt {{x^2} + 1} + {1 \over {\sqrt {{x^2} + 1} }}\) \( \ge 2\sqrt {\sqrt {{x^2} + 1} .{1 \over {\sqrt {{x^2} + 1} }}}=2\)
\(g(x) = 2 \Leftrightarrow \sqrt {{x^2} + 1} = {1 \over {\sqrt {{x^2} + 1} }} \)
\(\Leftrightarrow {x^2} + 1 = 1 \Leftrightarrow x = 0\)
Vậy giá trị nhỏ nhất của g(x) là 2.
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            