Bài 78 trang 155 SGK Đại số 10 nâng cao>
Tìm giá trị nhỏ nhất của các hàm số sau
Tìm giá trị nhỏ nhất của các hàm số sau
LG a
\(f(x) = |x + {1 \over x}|\)
Phương pháp giải:
Áp dụng BĐT Cô - si cho hai số dương \(a + b \ge 2\sqrt {ab} \)
Lời giải chi tiết:
Vì với mọi x ≠ 0; x và \({1 \over x}\) cùng dấu nên:
\(f(x) = |x + {1 \over x}| = |x| + {1 \over {|x|}} \)
Áp dụng BĐT Cô - si cho hai số dương \(|x|, {1 \over {|x|}}\) ta có:
\(|x| + {1 \over {|x|}} \ge 2\sqrt {|x|.{1 \over {|x|}}} = 2\) với mọi x ≠ 0 hay \(f(x)\ge 2\) với mọi x ≠ 0.
Dấu “=” xảy ra khi và chỉ khi: \(|x| = {1 \over {|x|}} \Leftrightarrow x^2 = 1\) \(\Leftrightarrow x = \pm 1\)
Vậy giá trị nhỏ nhất của f(x) là 2.
LG b
\(g(x) = {{{x^2} + 2} \over {\sqrt {{x^2} + 1} }}\)
Phương pháp giải:
Thu gọn g(x) rồi áp dụng BĐT Cô - si.
Lời giải chi tiết:
Với mọi x ∈ R, ta có:
\( g(x) = {{{x^2} + 1} \over {\sqrt {{x^2} + 1} }} + {1 \over {\sqrt {{x^2} + 1} }} \)
\(= \sqrt {{x^2} + 1} + {1 \over {\sqrt {{x^2} + 1} }}\)
Áp dụng BĐT cho hai số dương \(\sqrt {{x^2} + 1} , {1 \over {\sqrt {{x^2} + 1} }}\) ta có:
\(\sqrt {{x^2} + 1} + {1 \over {\sqrt {{x^2} + 1} }}\) \( \ge 2\sqrt {\sqrt {{x^2} + 1} .{1 \over {\sqrt {{x^2} + 1} }}}=2\)
\(g(x) = 2 \Leftrightarrow \sqrt {{x^2} + 1} = {1 \over {\sqrt {{x^2} + 1} }} \)
\(\Leftrightarrow {x^2} + 1 = 1 \Leftrightarrow x = 0\)
Vậy giá trị nhỏ nhất của g(x) là 2.
Loigiaihay.com
- Bài 79 trang 155 SGK Đại số 10 nâng cao
- Bài 80 trang 155 SGK Đại số 10 nâng cao
- Bài 81 trang 155 SGK Đại số 10 nâng cao
- Bài 82 trang 155 SGK Đại số 10 nâng cao
- Bài 83 trang 156 SGK Đại số 10 nâng cao
>> Xem thêm