Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 48 trang 112 SGK Đại số và Giải tích 12 Nâng cao>
Tìm các giới hạn sau:
Tìm các giới hạn sau:
LG a
\(\mathop {\lim }\limits_{x \to 0} {{{e^2} - {e^{3x + 2}}} \over x}\)
Phương pháp giải:
Sử dụng giới hạn \(\mathop {\lim }\limits_{u \to 0} \frac{{{e^u} - 1}}{u} = 1\)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to 0} {{{e^2} - {e^{3x + 2}}} \over x} = \mathop {\lim }\limits_{x \to 0} \frac{{{e^2} - {e^{3x}}.{e^2}}}{x}\)
\(= \mathop {\lim }\limits_{x \to 0} {{{-e^2}\left( {e^{3x}-1} \right)} \over x}= - {e^2}.\mathop {\lim }\limits_{x \to 0} \frac{{3\left( {{e^{3x}} - 1} \right)}}{{3x}}\)
\( = - 3{e^2}.\mathop {\lim }\limits_{x \to 0} {{{e^{3x}} - 1} \over {3x}} = - 3{e^2}.1=- 3{e^2} \).
LG b
\(\mathop {\lim }\limits_{x \to 0} {{{e^{2x}} - {e^{5x}}} \over x}\)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to 0} {{{e^{2x}} - {e^{5x}}} \over x} = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\left( {{e^{2x}} - 1} \right) - \left( {{e^{5x}} - 1} \right)}}{x}} \right)\)
\(\begin{array}{l}
= \mathop {\lim }\limits_{x \to 0} \frac{{{e^{2x}} - 1}}{x} - \mathop {\lim }\limits_{x \to 0} \frac{{{e^{5x}} - 1}}{x}\\
= \mathop {\lim }\limits_{x \to 0} \frac{{2\left( {{e^{2x}} - 1} \right)}}{{2x}} - \mathop {\lim }\limits_{x \to 0} \frac{{5\left( {{e^{5x}} - 1} \right)}}{{5x}}\\
= 2\mathop {\lim }\limits_{x \to 0} \frac{{{e^{2x}} - 1}}{{2x}} - 5\mathop {\lim }\limits_{x \to 0} \frac{{{e^{5x}} - 1}}{{5x}}\\
= 2.1 - 5.1\\
= - 3
\end{array}\)
Loigiaihay.com




