Bài 35 trang 60 SGK Đại số 10 nâng cao


Vẽ đồ thị và lập bảng biến thiên của các hàm số sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Vẽ đồ thị và lập bảng biến thiên của các hàm số sau:

LG a

\(y = \,|{x^2} + \sqrt 2 x|\)

Phương pháp giải:

Đồ thị hàm số y=|f(x)| có được từ đồ thị hàm số y=f(x) như sau:

+) Giữ nguyên phần đồ thị phía trên trục Ox.

+) Lấy đối xứng phần dưới qua Ox và xóa phần dưới cũ đi.

Lời giải chi tiết:

Vẽ đồ thị hàm số \(y = \,{x^2} + \sqrt 2 x\)  (P1) rồi suy ra đồ thị hàm số: \(y = \,|{x^2} + \sqrt 2 x|\)  (P)

Hoành độ của đỉnh: \({x_0} =  - {b \over {2a}} = {{ - \sqrt 2 } \over 2}\)\( \Rightarrow {y_0}  = {\left( { - \frac{{\sqrt 2 }}{2}} \right)^2} + \sqrt 2 .\left( { - \frac{{\sqrt 2 }}{2}} \right)\)\(= {1 \over 2} - 1 =  - {1 \over 2}\)

Đỉnh \(I( - {{\sqrt 2 } \over 2}; - {1 \over 2})\)

Bảng giá trị:

x

-1

 \( - {{\sqrt 2 } \over 2}\)

0

y

 \(1 - \sqrt 2 \)  \( - {1 \over 2}\)

0

Đồ thị hàm số:

Ta giữ nguyên phần đồ thị trên trục hoành và lấy đối xứng phần đồ thị của hàm số  \(y = \,{x^2} + \sqrt 2 x\) phía dưới trục hoành qua Ox ta được đồ thị của hàm \(y = \,|{x^2} + \sqrt 2 x|\) ( đồ thị là phần nét liền trên hình vẽ)

Bảng biến thiên:

 

LG b

y = -x2 + 2|x| + 3

Lời giải chi tiết:

Vẽ đồ thị hàm số y = -x2 + 2x + 3 (P1) rồi suy ra đồ thị hàm số: y = -x2 + 2|x| + 3 (P)

Hoành độ đỉnh: \({x_0} =  - {b \over {2a}} = {{ - 2} \over { - 2}} = 1 \Rightarrow {y_0} = 4\)

Đỉnh I (1, 4)

Bảng giá trị:

x

0

1

2

y

3

4

3

Đồ thị hàm số:

 

Bảng biến thiên

 

LG c

y = 0,5x2 - |x – 1| + 1

Lời giải chi tiết:

y = 0,5x2 - |x – 1| + 1

Ta có:

\(y = \left\{ \matrix{
0,5{x^2} - x + 2\,\,\,\,\,\,\,;x \ge 1 \hfill \cr 
0,5{x^2} + x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,;x < 1 \hfill \cr} \right.\)

Đồ thị hàm số:

 

Bảng biến thiên:

Loigiaihay.com


Bình chọn:
4.5 trên 16 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!