Bài 27 trang 58 SGK Đại số 10 nâng cao


Không vẽ đồ thị, hãy mô tả đồ thị của mỗi hàm số trên bằng cách điền vào chỗ trống (...) theo mẫu:

Lựa chọn câu để xem lời giải nhanh hơn

Cho các hàm số :

a) \(y = -x^2- 3\);

b) \(y = (x - 3)^2\);

c) \(y = \sqrt 2 {x^2} + 1\)         

d)  \(y =  - \sqrt 2 {(x + 1)^2}\)     

Không vẽ đồ thị, hãy mô tả đồ thị của mỗi hàm số trên bằng cách điền vào chỗ trống (...) theo mẫu:

- Đỉnh của parabol là điểm có tọa độ...

- Parabol có trục đối xứng là đường thẳng...

- Parabol hướng bề lõm (lên trên/ xuống dưới)...

LG a

\(y = -x^2- 3\)

Phương pháp giải:

- Đỉnh parabol \(\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)

- Trục đối xứng \(x= - \frac{b}{{2a}}\)

- Bề lõm: a > 0 hướng lên trên; a < 0 hướng xuống dưới.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
a = - 1,b = 0,c = - 3\\
\Delta = {0^2} - 4.\left( { - 1} \right).\left( { - 3} \right) = - 12\\
- \frac{b}{{2a}} = 0\\
- \frac{\Delta }{{4a}} = - \frac{{ - 12}}{{4.\left( { - 1} \right)}} = - 3
\end{array}\)

Đồ thị hàm số \(y = -x^2- 3\)

– Đỉnh của parabol là điểm có tọa độ (0; -3);

- Parabol có trục đối xứng là đường thẳng x = 0

- Parabol hướng bề lõm xuống dưới.

LG b

\(y = (x - 3)^2\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
y = {\left( {x - 3} \right)^2} = {x^2} - 6x + 9\\
a = 1,b = - 6,c = 9\\
\Delta = {\left( { - 6} \right)^2} - 4.1.9 = 0\\
- \frac{b}{{2a}} = - \frac{{ - 6}}{{2.1}} = 3\\
- \frac{\Delta }{{4a}} = - \frac{0}{{4.1}} = 0
\end{array}\)

Đồ thị hàm số \(y = (x - 3)^2\)

 – Đỉnh của parabol là điểm có tọa độ (3; 0);

- Parabol có trục đối xứng là đường thẳng x = 3;

- Parabol hướng bề lõm lên trên.

LG c

\(y = \sqrt 2 {x^2} + 1\) 

Lời giải chi tiết:

\(\begin{array}{l}
a = \sqrt 2 ,b = 0,c = 1\\
\Delta = {0^2} - 4.\sqrt 2 .1 = - 4\sqrt 2 \\
- \frac{b}{{2a}} = - \frac{0}{{2.\sqrt 2 }} = 0\\
- \frac{\Delta }{{4a}} = - \frac{{ - 4\sqrt 2 }}{{4.\sqrt 2 }} = 1
\end{array}\)

Đồ thị hàm số  \(y = \sqrt 2 {x^2} + 1\)   

- Đỉnh của parabol là điểm có tọa độ (0; 1);

- Parabol có trục đối xứng là đường thẳng x = 0;

- Parabol hướng bề lõm về phía trên.

LG d

\(y =  - \sqrt 2 {(x + 1)^2}\)

Lời giải chi tiết:

\(\begin{array}{l}
y = - \sqrt 2 {\left( {x + 1} \right)^2}\\
= - \sqrt 2 \left( {{x^2} + 2x + 1} \right)\\
= - \sqrt 2 {x^2} - 2\sqrt 2 x - \sqrt 2 \\
a = - \sqrt 2 ,b = - 2\sqrt 2 ,c = - \sqrt 2 \\
\Delta = {\left( { - 2\sqrt 2 } \right)^2} - 4.\left( { - \sqrt 2 } \right).\left( { - \sqrt 2 } \right) = 0\\
- \frac{b}{{2a}} = - \frac{{ - 2\sqrt 2 }}{{2.\left( { - \sqrt 2 } \right)}} = - 1\\
- \frac{\Delta }{{4a}} = - \frac{0}{{4.\left( { - \sqrt 2 } \right)}} = 0
\end{array}\)

Đồ thị hàm số \(y =  - \sqrt 2 {(x + 1)^2}\)        

- Đỉnh của parabol là điểm có tọa độ (-1; 0);

- Parabol có trục đối xứng là đường thẳng x = -1;

- Parabol hướng bề lõm về xuống dưới.

Loigiaihay.com


Bình chọn:
3.6 trên 10 phiếu

Các bài liên quan: - Bài 3: Hàm số bậc hai

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài