Bài 34 trang 31 SGK Hình học 10 Nâng cao


Trong mặt phẳng tọa độ, cho ba điểm

Lựa chọn câu để xem lời giải nhanh hơn

Trong mặt phẳng tọa độ, cho ba điểm \(A( - 3;4)\,,\,B(1;1)\,,\,C(9; - 5).\)

LG a

Chứng minh ba điểm \(A, B, C\) thẳng hàng.

Lời giải chi tiết:

Ta có

\(\,\,\,\left. \matrix{
\overrightarrow {AB} = (1 + 3\,;\,1 - 4) = (4\,;\, - 3) \hfill \cr 
\overrightarrow {AC} = (9 + 3\,;\, - 5 - 4) = (12\,;\, - 9) \hfill \cr} \right\}\)

\(\Rightarrow \,\overrightarrow {AC} \, = 3\overrightarrow {AB} \)

Vậy ba điểm \(A, B, C\) thẳng hàng.

LG b

Tìm tọa độ điểm \(D\) sao cho \(A\) là trung điểm của \(BD\).

Lời giải chi tiết:

Gọi \(D\,({x_D}\,;\,{y_D})\). Do \(A\) là trung điểm của \(BD\) nên ta có

\(\left\{ \matrix{
{x_A} = {{{x_B} + {x_D}} \over 2} \hfill \cr 
{y_A} = {{{y_B} + {y_D}} \over 2} \hfill \cr} \right.\,\, \Leftrightarrow \left\{ \matrix{
- 3 = {{1 + {x_D}} \over 2} \hfill \cr 
4 = {{1 + {y_D}} \over 2} \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
{x_D} = - 7 \hfill \cr 
{y_D} = 7 \hfill \cr} \right.\)

Vậy \(D( - 7\,;\,7)\).

LG c

Tìm tọa độ điểm \(E\) trên trục \(Ox\) sao cho \(A, B, E\) thẳng hàng.

Lời giải chi tiết:

Gọi \(E\,({x_E}\,;\,0)\) trên trục \(Ox\) sao cho \(A, B, E\) thẳng hàng.

Do đó có số \(k\) thỏa mãn \(\overrightarrow {AE}  = k\overrightarrow {AB} \)

\(\eqalign{
& \overrightarrow {AB} = \left( {4\,;\, - 3} \right)\,;\cr&\overrightarrow {AE} = \left( {{x_E} + 3\,;\, - 4} \right) \cr 
& \Rightarrow \,\,\left\{ \matrix{
{x_E} + 3 = 4k \hfill \cr 
- 4 = - 3k \hfill \cr} \right. \Rightarrow \,\left\{ \matrix{
k = {4 \over 3} \hfill \cr 
{x_E} = {7 \over 3} \hfill \cr} \right.\cr&\Rightarrow \,E\,\left( {{7 \over 3}\,;\,0} \right)\, \cr} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
2.7 trên 6 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài