Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 5. Trục tọa độ và hệ trục tọa độ
Bài 34 trang 31 SGK Hình học 10 Nâng cao>
Trong mặt phẳng tọa độ, cho ba điểm
Trong mặt phẳng tọa độ, cho ba điểm \(A( - 3;4)\,,\,B(1;1)\,,\,C(9; - 5).\)
LG a
Chứng minh ba điểm \(A, B, C\) thẳng hàng.
Lời giải chi tiết:
Ta có
\(\,\,\,\left. \matrix{
\overrightarrow {AB} = (1 + 3\,;\,1 - 4) = (4\,;\, - 3) \hfill \cr
\overrightarrow {AC} = (9 + 3\,;\, - 5 - 4) = (12\,;\, - 9) \hfill \cr} \right\}\)
\(\Rightarrow \,\overrightarrow {AC} \, = 3\overrightarrow {AB} \)
Vậy ba điểm \(A, B, C\) thẳng hàng.
LG b
Tìm tọa độ điểm \(D\) sao cho \(A\) là trung điểm của \(BD\).
Lời giải chi tiết:
Gọi \(D\,({x_D}\,;\,{y_D})\). Do \(A\) là trung điểm của \(BD\) nên ta có
\(\left\{ \matrix{
{x_A} = {{{x_B} + {x_D}} \over 2} \hfill \cr
{y_A} = {{{y_B} + {y_D}} \over 2} \hfill \cr} \right.\,\, \Leftrightarrow \left\{ \matrix{
- 3 = {{1 + {x_D}} \over 2} \hfill \cr
4 = {{1 + {y_D}} \over 2} \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{
{x_D} = - 7 \hfill \cr
{y_D} = 7 \hfill \cr} \right.\)
Vậy \(D( - 7\,;\,7)\).
LG c
Tìm tọa độ điểm \(E\) trên trục \(Ox\) sao cho \(A, B, E\) thẳng hàng.
Lời giải chi tiết:
Gọi \(E\,({x_E}\,;\,0)\) trên trục \(Ox\) sao cho \(A, B, E\) thẳng hàng.
Do đó có số \(k\) thỏa mãn \(\overrightarrow {AE} = k\overrightarrow {AB} \)
\(\eqalign{
& \overrightarrow {AB} = \left( {4\,;\, - 3} \right)\,;\cr&\overrightarrow {AE} = \left( {{x_E} + 3\,;\, - 4} \right) \cr
& \Rightarrow \,\,\left\{ \matrix{
{x_E} + 3 = 4k \hfill \cr
- 4 = - 3k \hfill \cr} \right. \Rightarrow \,\left\{ \matrix{
k = {4 \over 3} \hfill \cr
{x_E} = {7 \over 3} \hfill \cr} \right.\cr&\Rightarrow \,E\,\left( {{7 \over 3}\,;\,0} \right)\, \cr} \)
Loigiaihay.com




