Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 33 trang 28 SGK Đại số và Giải tích 12 Nâng cao>
Cho đường cong (C) có phương trình , trong đó , và điểm thỏa mãn: . Viết công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ và phương trình của (C) đối với hệ tọa độ IXY. Từ đó suy ra rằng I là tâm đối xứng của đường cong (C).
Đề bài
Cho đường cong \((C)\) có phương trình \(y = ax + b + {c \over {x - {x_o}}}\), trong đó \(a \ne 0\), \(c \ne 0\) và điểm \(I\left( {{x_o};{y_o}} \right)\) thỏa mãn: \({y_o} = a{x_o} + b\) . Viết công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ \(\overrightarrow {OI} \) và phương trình của \((C)\) đối với hệ tọa độ \(IXY\). Từ đó suy ra rằng \(I\) là tâm đối xứng của đường cong (\(C)\).
Lời giải chi tiết
Ta có: \(y = ax + b + {c \over {x - {x_o}}}\) \( \Leftrightarrow y = ax - a{x_0} + a{x_0} + b + \frac{c}{{x - {x_0}}}\) \( \Leftrightarrow y = a\left( {x - {x_o}} \right) + {y_o} + {c \over {x - {x_o}}}\)
\( \Leftrightarrow y - {y_o} = a\left( {x - {x_o}} \right) + {c \over {x - {x_o}}}\)
Đặt
\(\left\{ \matrix{
x - {x_o} = X \hfill \cr
y - {y_o} = Y \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{
x = X + {x_o} \hfill \cr
y = Y + {y_o} \hfill \cr} \right.\)
Đây là công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ \(\overrightarrow {OI} \) với \(I\left( {{x_o};{y_o}} \right)\).
Khi đó \(Y = aX + {c \over X}\) là phương trình của \((C)\) đối với hệ tọa độ \(IXY\).
\(Y = aX + {c \over X}\) là hàm số lẻ nên đồ thị \((C)\) nhận gốc tọa độ \(I\) làm tâm đối xứng.
Vậy đồ thị hàm số đã cho nhận \(I\left( {{x_0};a{x_0} + b} \right)\) làm tâm đối xứng.
Cách trình bày khác:
Công thức chuyển hệ tọa độ trong phép tịnh tiến theo OI với I(xo,yo) là:
\(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + a{x_0} + b\end{array} \right.\)
Phương trình của (C) đối với hệ tọa độ IXY là:
\(Y + a{x_0} + b\)\( = a\left( {X + {x_0}} \right) + b + \frac{c}{{X + {x_0} - {x_0}}}\)
\( \Leftrightarrow Y + a{x_0} + b\) \( = aX + a{x_0} + b + \frac{c}{X}\)
\( \Leftrightarrow Y = aX + \frac{c}{X}\)
Do hàm số \(Y = aX + \frac{c}{X}\) là hàm số lẻ nên đồ thị (C) nhận gốc tọa độ tâm I làm tâm đối xứng.
Vậy đồ thị hàm số đã cho nhận \(I\left( {{x_0};a{x_0} + b} \right)\) làm tâm đối xứng.
Loigiaihay.com




