Bài 31 trang 27 SGK Đại số và Giải tích 12 Nâng cao


Đề bài

Cho đường cong \((C)\) có phương trình là \(y = 2 - {1 \over {x + 2}}\) và điểm \(I\left( { - 2;2} \right)\) . Viết công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ \(\overrightarrow {OI} \) và viết phương trình của đường cong \((C)\) đối với hệ tọa độ \(IXY\). Từ đó suy ra \(I\) là tâm đối xứng của \((C)\).

Lời giải chi tiết

Công thức chuyển trục tọa độ tịnh tiến theo \(\overrightarrow {OI} \) là

\(\left\{ \matrix{
x = X - 2 \hfill \cr 
y = Y + 2 \hfill \cr} \right.\)

Phương trình của đường cong \((C)\) đối với hệ tọa độ \(IXY\)

\(Y + 2 = 2 - {1 \over {X - 2 + 2}} \Leftrightarrow Y = {{ - 1} \over X}\)

Đây là hàm số lẻ nên đồ thị \((C)\) nhận gốc tọa độ \(I\) làm tâm đối xứng.

Loigiaihay.com


Bình chọn:
3.7 trên 7 phiếu
  • Bài 32 trang 28 SGK Đại số và Giải tích 12 Nâng cao

    Hướng dẫn. b) Viết công thức đã cho dưới dạng

  • Bài 33 trang 28 SGK Đại số và Giải tích 12 Nâng cao

    Cho đường cong (C) có phương trình , trong đó , và điểm thỏa mãn: . Viết công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ và phương trình của (C) đối với hệ tọa độ IXY. Từ đó suy ra rằng I là tâm đối xứng của đường cong (C).

  • Bài 30 trang 27 SGK Đại số và Giải tích 12 Nâng cao

    Cho hàm số a) Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của phương trình b) Viết công thức chuyển hệ tọa độ trong phép định tiến theo vectơ và viết phương trình của đường cong (C) đối với hệ tọa độ IXY. Từ đó suy ra rằng I là tâm đối xứng của đường cong (C). c) Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hệ tọa độ Oxy. Chứng minh rằng trên khoảng đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng đ

  • Bài 29 trang 27 SGK Đại số và Giải tích 12 Nâng cao

    Xác định đỉnh I của mỗi parabol (P) sau đây. Viết công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ và ciết phương trình của parabol (P) đối với hệ tọa độ IXY.

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài