Bài 27 trang 58 SGK Đại số 10 nâng cao


Không vẽ đồ thị, hãy mô tả đồ thị của mỗi hàm số trên bằng cách điền vào chỗ trống (...) theo mẫu:

Lựa chọn câu để xem lời giải nhanh hơn

Cho các hàm số :

a) \(y = -x^2- 3\);

b) \(y = (x - 3)^2\);

c) \(y = \sqrt 2 {x^2} + 1\)         

d)  \(y =  - \sqrt 2 {(x + 1)^2}\)     

Không vẽ đồ thị, hãy mô tả đồ thị của mỗi hàm số trên bằng cách điền vào chỗ trống (...) theo mẫu:

- Đỉnh của parabol là điểm có tọa độ...

- Parabol có trục đối xứng là đường thẳng...

- Parabol hướng bề lõm (lên trên/ xuống dưới)...

LG a

\(y = -x^2- 3\)

Phương pháp giải:

- Đỉnh parabol \(\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)

- Trục đối xứng \(x= - \frac{b}{{2a}}\)

- Bề lõm: a > 0 hướng lên trên; a < 0 hướng xuống dưới.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
a = - 1,b = 0,c = - 3\\
\Delta = {0^2} - 4.\left( { - 1} \right).\left( { - 3} \right) = - 12\\
- \frac{b}{{2a}} = 0\\
- \frac{\Delta }{{4a}} = - \frac{{ - 12}}{{4.\left( { - 1} \right)}} = - 3
\end{array}\)

Đồ thị hàm số \(y = -x^2- 3\)

– Đỉnh của parabol là điểm có tọa độ (0; -3);

- Parabol có trục đối xứng là đường thẳng x = 0

- Parabol hướng bề lõm xuống dưới.

LG b

\(y = (x - 3)^2\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
y = {\left( {x - 3} \right)^2} = {x^2} - 6x + 9\\
a = 1,b = - 6,c = 9\\
\Delta = {\left( { - 6} \right)^2} - 4.1.9 = 0\\
- \frac{b}{{2a}} = - \frac{{ - 6}}{{2.1}} = 3\\
- \frac{\Delta }{{4a}} = - \frac{0}{{4.1}} = 0
\end{array}\)

Đồ thị hàm số \(y = (x - 3)^2\)

 – Đỉnh của parabol là điểm có tọa độ (3; 0);

- Parabol có trục đối xứng là đường thẳng x = 3;

- Parabol hướng bề lõm lên trên.

LG c

\(y = \sqrt 2 {x^2} + 1\) 

Lời giải chi tiết:

\(\begin{array}{l}
a = \sqrt 2 ,b = 0,c = 1\\
\Delta = {0^2} - 4.\sqrt 2 .1 = - 4\sqrt 2 \\
- \frac{b}{{2a}} = - \frac{0}{{2.\sqrt 2 }} = 0\\
- \frac{\Delta }{{4a}} = - \frac{{ - 4\sqrt 2 }}{{4.\sqrt 2 }} = 1
\end{array}\)

Đồ thị hàm số  \(y = \sqrt 2 {x^2} + 1\)   

- Đỉnh của parabol là điểm có tọa độ (0; 1);

- Parabol có trục đối xứng là đường thẳng x = 0;

- Parabol hướng bề lõm về phía trên.

LG d

\(y =  - \sqrt 2 {(x + 1)^2}\)

Lời giải chi tiết:

\(\begin{array}{l}
y = - \sqrt 2 {\left( {x + 1} \right)^2}\\
= - \sqrt 2 \left( {{x^2} + 2x + 1} \right)\\
= - \sqrt 2 {x^2} - 2\sqrt 2 x - \sqrt 2 \\
a = - \sqrt 2 ,b = - 2\sqrt 2 ,c = - \sqrt 2 \\
\Delta = {\left( { - 2\sqrt 2 } \right)^2} - 4.\left( { - \sqrt 2 } \right).\left( { - \sqrt 2 } \right) = 0\\
- \frac{b}{{2a}} = - \frac{{ - 2\sqrt 2 }}{{2.\left( { - \sqrt 2 } \right)}} = - 1\\
- \frac{\Delta }{{4a}} = - \frac{0}{{4.\left( { - \sqrt 2 } \right)}} = 0
\end{array}\)

Đồ thị hàm số \(y =  - \sqrt 2 {(x + 1)^2}\)        

- Đỉnh của parabol là điểm có tọa độ (-1; 0);

- Parabol có trục đối xứng là đường thẳng x = -1;

- Parabol hướng bề lõm về xuống dưới.

Loigiaihay.com


Bình chọn:
3.7 trên 11 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí