Bài 2 trang 45 SGK Hình học 12 Nâng cao


a) Tìm tập hợp tâm các mặt cầu đi qua hai điểm phân biệt A, B cho trước. b) Tìm tập hợp tâm các mặt cầu đi qua hai điểm phân biệt A, B, C cho trước. c) Tìm tập hợp tâm các mặt cầu đi qua một đường tròn cho trước. d) Có hay không một mặt cầu đi qua một đường tròn và một điểm nằm ngoài mặt phẳng chứa đường tròn.

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Tìm tập hợp tâm các mặt cầu đi qua hai điểm phân biệt \(A, B\) cho trước.

Lời giải chi tiết:

\(I\) là tâm của các mặt cầu đi qua hai điểm phân biệt \(A, B\) cho trước khi và chỉ khi \(IA = IB\).

Vậy tập hợp tâm của các mặt cầu đó là mặt phẳng trung trực của đoạn thẳng \(AB\).

LG b

Tìm tập hợp tâm các mặt cầu đi qua hai điểm phân biệt \(A, B, C\) cho trước.

Lời giải chi tiết:

\(I\) là tâm của mặt cầu đi qua ba điểm phân biệt \(A, B, C\) cho trước khi và chỉ khi \(IA = IB = IC\). Vậy:

+ Nếu ba điểm \(A, B, C\) không thẳng hàng thì tập hợp các điểm \(I\) là trục của đường trong ngoại tiếp tam giác \(ABC\).

+ Nếu ba điểm \(A, B, C\) thẳng hàng thì tập hợp các điểm \(I\) là rỗng.

LG c

Tìm tập hợp tâm các mặt cầu đi qua một đường tròn cho trước.

Lời giải chi tiết:

\(I\) là tâm của mặt cầu đi qua đường tròn \((C)\) cho trước khi và chỉ khi \(I\) cách đều mọi điểm của đường tròn.

Vậy tập hợp các điểm \(I\) là trục của đường tròn \((C)\) (tức là đường thẳng đi qua tâm và vuông góc với mặt phẳng chứa đường tròn (C)).

LG d

Có hay không một mặt cầu đi qua một đường tròn và một điểm nằm ngoài mặt phẳng chứa đường tròn.

Lời giải chi tiết:

Gọi \(M\) là một điểm nằm ngoài mặt phẳng chứa đường tròn \((C)\).

Lấy điểm \(A\) nằm trên \((C)\) và gọi \(I\) là giao điểm của trục đường tròn (là đường thẳng đi qua tâm và vuông góc mặt phẳng chứa đường tròn (C)) và mặt phẳng trung trực của \(MA\).

Khi đó mặt cầu tâm \(I\), bán kính \(R = IA = IM\) là mặt cầu đi qua đường tròn \((C)\) và đi qua điểm \(M\).

Loigiaihay.com


Bình chọn:
3.8 trên 5 phiếu

Các bài liên quan: - Bài 1. Mặt cầu, khối cầu

  • Bài 3 trang 45 SGK Hình học 12 Nâng cao

    Cho điểm M nằm trong mặt cầu (S). Trong các mệnh đề sau đây, mệnh đề nào đúng?

  • Bài 4 trang 45 SGK Hình học 12 Nâng cao

    Cho đường thẳng d và điểm A không nằm trên d. Xét các mặt cầu đi qua A và có tâm nằm trên d. Chứng minh rằng các mặt cầu đó luôn đi qua một đường tròn cố định.

  • Bài 5 trang 45 SGK Hình học 12 Nâng cao

    Trong các mệnh đề sau đây, mệnh đề nào đúng? a) Nếu hình đa diện nội tiếp mặt cầu thì mọi mặt của nó là đa giác nội tiếp đường tròn. b) Nếu tất cả các mặt của một hình đa diện nội tiếp đường tròn thì đa diện đó nội tiếp mặt cầu.

  • Bài 6 trang 45 SGK Hình học 12 Nâng cao

    a) Tìm tập hợp các mặt cầu tiếp xúc với ba cạnh của một tam giác cho trước. b) Chứng minh rằng nếu có mặt cầu tiếp xúc với sáu cạnh của hình tứ diện ABCD

  • Bài 7 trang 45 SGK Hình học 12 Nâng cao

    a) Tính thể tích khối cầu ngoại tiếp hình chóp tam giác đều có cạnh đáy bằng a và chiều cao bằng h. b) Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh cùng bằng a. Gọi A’, B’, C’, D’ lần lượt là trung điểm của SA, SB, SC, SD. Chứng minh rằng các điểm A, B, C, D, A’, B’, C’, D’ cùng thuộc một mặt cầu và tính thể tích khối cầu đó.

  • Bài 8 trang 45 SGK Hình học 12 Nâng cao

    Cho tứ diện ABCD với AB = CD = c, AC = BD = b, AD = BC = a. a) Tính diện tích mặt cầu ngoại tiếp tứ diện. b) Chứng minh rằng có một mặt cầu tiếp xúc với bốn mặt của hình tứ diện (nó được gọi là mặt cầu nội tiếp tứ diện)

  • Bài 9 trang 46 SGK Hình học 12 Nâng cao

    Tìm diện tích mặt cầu ngoại tiếp hình chóp S.ABC biết rằng SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Chứng minh rằng các điểm S, trọng tâm tam giác ABC và tâm mặt cầu ngoại tiếp hình chóp S.ABC thẳng hàng.

  • Bài 10 trang 46 SGK Hình học 12 Nâng cao

    a) Chứng minh rằng một hình trụ lăng trụ có mặt cầu cầu ngoại tiếp khi và chỉ khi nó là hình lăng trụ đứng với đáy là đa giác nội tiếp đường tròn. b) Trong số các hình hộp nội tiếp mặt cầu cho trước, hình hộp nào có diện tích toàn phần lớn nhất?

  • Bài 1 trang 45 SGK Hình học 12 Nâng cao

    Trong không gian cho ba đoạn thẳng AB, BC, CD sao cho . Chứng minh rằng có mặt cầu đi qua bốn điểm A, B, C, D. Tính bán kính mặt cầu đó

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài