CHƯƠNG 1. ĐA THỨC NHIỀU BIẾN
Bài 1. Đơn thức nhiều biến. Đa thức nhiều biến
Bài 2. Các phép tính với đa thức nhiều biến
Bài 3. Hằng đẳng thức đáng nhớ
Bài 4. Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử
Bài tập cuối chương 1
CHƯƠNG 5. TAM GIÁC. TỨ GIÁC
Bài 1. Định lí Pythagore
Bài 2. Tứ giác
Bài 3. Hình thang cân
Bài 4. Hình bình hành
Bài 5. Hình chữ nhật
Bài 6. Hình thoi
Bài 7. Hình vuông
Bài tập cuối chương 5
CHƯƠNG 6. MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC SUẤT
Bài 1. Thu thập và phân loại dữ liệu
Bài 2. Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ
Bài 3. Phân tích và xử lí dữ liệu thu được ở dạng bảng, biểu đồ
Bài 4. Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
Bài 5. Xác suất thực nghiệm của một biến cố trong một số trò chơi đơn giản
Bài tập cuối chương 6
CHƯƠNG 8. TAM GIÁC ĐỒNG DẠNG. HÌNH ĐỒNG DẠNG
Bài 1. Định lí Thalès trong tam giác
Bài 2. Ứng dụng của định lí Thalès trong tam giác
Bài 3. Đường trung bình của tam giác
Bài 4. Tính chất đường phân giác của tam giác
Bài 5. Tam giác đồng dạng
Bài 6. Trường hợp đồng dạng thứ nhất của tam giác
Bài 7. Trường hợp đồng dạng thứ hai của tam giác
Bài 8. Trường hợp đồng dạng thứ ba của tam giác
Bài 9. Hình đồng dạng
Bài 10. Hình đồng dạng trong thực tiễn
Bài tập cuối chương 8

Trắc nghiệm Tính giá trị biểu thức Toán 8 có đáp án

Trắc nghiệm Tính giá trị biểu thức

25 câu hỏi
Trắc nghiệm
Câu 1 :

Cho biết \({99^2} = {a^2} - 2ab + {b^2}\)  với \(a,\,b \in \mathbb{R}\) . Khi đó

  • A.
    \(a = 98,\,b = 1\) .
  • B.
    \(a = 100,\,b = 1\) .
  • C.
    \(a = 100,\,b =  - 1\) .
  • D.

    \(a = - 98,\,b =  1\) .

Câu 2 :

Viết \({101^2} - {99^2}\)  dưới dạng tích hoặc bình phương của một tổng (hiệu).

  • A.
    \({\left( {101 - 99} \right)^2}\) .
  • B.
    \(\left( {101 - 99} \right)\left( {101 + 99} \right)\) .
  • C.
    \({\left( {101 + 99} \right)^2}\) .
  • D.
    \({\left( {99 - 101} \right)^2}\) .
Câu 3 :

Cho \(M = \frac{{{{\left( {x + 5} \right)}^2} + {{\left( {x - 5} \right)}^2}}}{{{x^2} + 25}}; N = \frac{{{{\left( {2x + 5} \right)}^2} + {{\left( {5x - 2} \right)}^2}}}{{{x^2} + 1}}\) . Tìm mối quan hệ giữa \(M, N\) ?

  • A.
    \(N = 14M - 1\) .
  • B.
    \(N = 14M\) .
  • C.
    \(N = 14M + 1\) .
  • D.
    \(N = 14M - 2\) .
Câu 4 :

Cho biểu thức \(T = {x^2} + 20x + 101\) . Khi đó

  • A.
    \(T \le 1\) .
  • B.
    \(T \le 101\) .
  • C.
    \(T \ge 1\) .
  • D.
    \(T \ge 100\) .
Câu 5 :

Cho biểu thức \(\;N = 2{\left( {x-1} \right)^2}\;-4{\left( {3 + x} \right)^2}\; + 2x\left( {x + 14} \right)\) . Giá trị của biểu thức \(\;N\) khi \(\;x = 1001\) là

  • A.
    \(\;1001\) .
  • B.
    \(\;1\) .
  • C.
    \(\; - 34\) .
  • D.
    \(\;20\) .
Câu 6 :

Giá trị lớn nhất của biểu thức \(\;Q = 8-8x-{x^2}\) là

  • A.
    \(4\) .
  • B.
    \( - 4\) .
  • C.
    \(24\) .
  • D.
    \(\; - 24\) .
Câu 7 :

Cho biểu thức \(M = {79^2} + {77^2} + {75^2} + ... + {3^2} + {1^2}\) và \(N = {78^2} + {76^2} + {74^2} + ... + {4^2} + {2^2}\) . Tính giá trị của biểu thức \(\frac{{M - N}}{2}\) .

  • A.
    \(1508\) .
  • B.
    \(3160\) .
  • C.
    \(1580\) .
  • D.
    \(3601\) .
Câu 8 :

Cho đẳng thức \({\left( {a + b + c} \right)^2} = 3\left( {ab + bc + ca} \right)\) . Khi đó

  • A.
    \(a = - b = - c\) .
  • B.
    \(a = b = \frac{c}{2}\) .
  • C.
    \(a = b = c\) .
  • D.
    \(a = 2b = 3c\) .
Câu 9 :

Giá trị nhỏ nhất của biểu thức \(T = \left( {{x^2} + 4x + 5} \right)\left( {{x^2} + 4x + 6} \right) + 3\) là

  • A.
    \(4\) .
  • B.
    \(3\) .
  • C.
    \(2\) .
  • D.
    \(5\) .
Câu 10 :

Tính nhanh: \({23^3} - {9.23^2} + 27.23 - 27\).

  • A.
    \(4000\).
  • B.
    \(8000\).
  • C.
    \(6000\).
  • D.
    \(2000\).
Câu 11 :

Giá trị của biểu thức \({x^3}\;-6{x^2}y + 12x{y^2}\;-8{y^3}\;\)tại \(x = 2021\) và \(y = 1010\) là

  • A.
    \( - 1\).
  • B.
    \(1\).
  • C.
    \(0\).
  • D.
    \( - 2\).
Câu 12 :

Tính giá trị của biểu thức \(M = {\left( {x + 2y} \right)^3} - 6{\left( {x + 2y} \right)^2} + 12\left( {x + 2y} \right) - 8\) tại\(x = 20;\,y = 1\) .

  • A.
    \(4000\).
  • B.
    \(6000\).
  • C.
    \(8000\).
  • D.
    \(2000\).
Câu 13 :

Cho \(\;2x-y = 9\). Giá trị của biểu thức

\(\;A = 8{x^3}\;-12{x^2}y + 6x{y^2}\;-{y^3}\; + 12{x^2}\;-12xy + 3{y^2}\; + 6x-3y + 11\) là

  • A.
    \(A = 1001\).
  • B.
    \(A = 1000\).
  • C.
    \(A = 1010\).
  • D.
    \(A = 900\).
Câu 14 :

Giá trị của biểu thức \(Q = {a^3} - {b^3}\) biết \(a - b = 4\) và \(ab =  - 3\) là

  • A.
    \(Q = 100\).
  • B.
    \(Q = 64\).
  • C.
    \(Q = 28\).
  • D.
    \(Q = 36\).
Câu 15 :

Cho \(\;a + b + c = 0\). Giá trị của biểu thức \(\;B = {a^3}\; + {b^3}\; + {c^3}\;-3abc\;\) là

  • A.
    \(B = 0\).
  • B.
    \(B = 1\).
  • C.
    \(B =  - 1\).
  • D.
    Không xác định được.
Câu 16 :

Giá trị của biểu thức \(125 + (x - 5)({x^2} + 5x + 25)\) với x = -5 là

  • A.
    \(125\).
  • B.
    \( - 125\).
  • C.
    \(250\).
  • D.
    \( - 250\).
Câu 17 :

Cho \(x + y = 1\). Tính giá trị biểu thức \(A = {x^3} + 3xy + {y^3}\)

  • A.
    \( - 1\).
  • B.
    \(0\).
  • C.
    \(1\).
  • D.
    \(3xy\).
Câu 18 :

Cho x – y = 2. Tính giá trị biểu thức \(A = {x^3} - 6xy - {y^3}\)

  • A.
    \(0\).
  • B.
    \(2\).
  • C.
    \(4\).
  • D.
    \(8\).
Câu 19 :

Cho \(A = {1^3} + {3^3} + {5^3} + {7^3} + {9^3} + {11^3}\). Khi đó

  • A.
    A chia hết cho 12 và 5.
  • B.
    A không chia hết cho cả 12 và 5.
  • C.
    A chia hết cho 12 nhưng không chia hết cho 5.
  • D.
    A chia hết cho 5 nhưng không chia hết cho 12.
Câu 20 :

Cho \(a,b,m\) và \(n\) thỏa mãn các đẳng thức: \(a + b = m\) và \(a - b = n\). Giá trị của biểu thức \(A = {a^3} + {b^3}\) theo m và n.

  • A.
    \(A = \frac{{{m^3}}}{4}\).
  • B.
    \(A = \frac{1}{4}m(5{n^2} + {m^2})\).
  • C.
    \(A = \frac{1}{4}m(3{n^2} + {m^2})\).
  • D.
    \(A = \frac{1}{4}m(3{n^2} - {m^2})\).
Câu 21 :

Cho \(x,y,a\) và \(b\) thỏa mãn các đẳng thức: \(x - y = a - b\,\,\,(1)\) và \({x^2} + {y^2} = {a^2} + {b^2}\,\,\,(2)\). Biểu thức \({x^3} - {y^3} = ?\)

  • A.
    \((a - b)({a^2} + {b^2})\).
  • B.
    \({a^3} - {b^3}\).
  • C.
    \({(a - b)^3}\).
  • D.
    \({(a - b)^2}({a^2} + {b^2})\).
Câu 22 :

Với mọi a, b, c thỏa mãn a + b + c = 0 thì giá trị của biểu thức \({a^3} + {b^3} + {c^3} - 3abc\) là:

  • A.
    \(0\).
  • B.
    \(1\).
  • C.
    \( - 3abc\).
  • D.
    \({a^3} + {b^3} + {c^3}\)
Câu 23 :

Giá trị của biểu thức \(N = (2x - 2)({x^2} + x + 1) - \left( {x - 1} \right)\left( {x + 1} \right)\) tại x = 10 

  • A.
    1899
  • B.

    1891

  • C.

    1991

  • D.

    2001

Câu 24 :

Tính giá trị biểu thức \(A = 8{x^3} + 12{x^2} + 6x + 1\) tại \(x = 9,5\) .

  • A.
     20. 
  • B.

     400

  • C.

     4000

  • D.

     8000

Câu 25 :

Kết quả của phép tính \({72^2} + {22^2} - 44.72\) là:

  • A.

    784.

  • B.

    250.

  • C.

    2500.

  • D.

    8836.