Giải bài 4.35 trang 87 SGK Toán 7 tập 1 - Kết nối tri thức>
Trong Hình 4.77, có AO = BO
Đề bài
Trong Hình 4.77, có AO = BO,\(\widehat {OAM} = \widehat {OBN}\). Chứng minh rằng AM = BN.
Phương pháp giải - Xem chi tiết
Chứng minh 2 tam giác OAM và OBN bằng nhau từ đó suy ra AM=BN.
Lời giải chi tiết
Xét 2 tam giác OAM và OBN có:
\(\widehat {OAM} = \widehat {OBN}\) (gt)
AO=BO (gt)
\(\widehat{O}\) chung
=>\(\Delta OAM = \Delta OBN\)(g.c.g)
=>AM=BN (2 cạnh tương ứng)
- Giải bài 4.36 trang 87 SGK Toán 7 tập 1 - Kết nối tri thức
- Giải bài 4.37 trang 87 SGK Toán 7 tập 1 - Kết nối tri thức
- Giải bài 4.38 trang 87 SGK Toán 7 tập 1 - Kết nối tri thức
- Giải bài 4.39 trang 87 SGK Toán 7 tập 1 - Kết nối tri thức
- Giải bài 4.34 trang 87 SGK Toán 7 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7 Kết nối tri thức
- Giải câu hỏi trang 108, 109 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2
- Lý thuyết quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7 Kết nối tri thức
- Giải câu hỏi trang 108, 109 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2