Giải bài 3.26 trang 57 SGK Toán 7 tập 1 - Kết nối tri thức>
Cho góc xOy không phải là góc bẹt. Khẳng định nào sau đây là đúng?
Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên...
Đề bài
Cho góc xOy không phải là góc bẹt. Khẳng định nào sau đây là đúng?
(1) Nếu Ot là tia phân giác của góc xOy thì \(\widehat {xOt} = \widehat {tOy}\).
(2) Nếu tia Ot thỏa mãn \(\widehat {xOt} = \widehat {tOy}\) thì Ot là tia phân giác của góc xOy.
Nếu có khẳng định không đúng, hãy nêu ví dụ cho thấy khẳng định đó không đúng.
(Gợi ý: Xét tia đối của một tia phân giác)
Phương pháp giải - Xem chi tiết
Khi Om là tia phân giác của góc xOy thì \(\widehat {xOm} = \widehat {mOy} = \frac{1}{2}.\widehat {xOy}\)
Lời giải chi tiết
(1) đúng vì Ot là tia phân giác của góc xOy thì \(\widehat {xOt} = \widehat {tOy} = \frac{1}{2}.\widehat {xOy}\)
(2) sai vì
Gọi Ot’ là tia phân giác của góc xOy, ta có: \(\widehat {xOt'} = \widehat {t'Oy}\)
Xét tia Ot là tia đối của tia Ot' thì \(\widehat {xOt'}+ \widehat {xOt}= 180^0; \widehat {t'Oy}+\widehat {tOy}=180^0\) (kề bù)
Ta có: \(\widehat {xOt} = \widehat {tOy}\) nhưng Ot không là tia phân giác của góc xOy.
Chú ý:
Mỗi góc khác góc bẹt chỉ có một tia phân giác.
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7 Kết nối tri thức
- Giải câu hỏi trang 108, 109 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2
- Lý thuyết quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7 Kết nối tri thức
- Giải câu hỏi trang 108, 109 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2