Giải câu hỏi trang 55, 56, 57 SGK Toán 7 tập 1 - Kết nối tri thức>
Vẽ hình và viết giả thiết, kết luận của định lí: “ Hai góc đối đỉnh thì bằng nhau”...Em hãy chứng minh định lí: “ Hai góc kề bù bằng nhau thì mỗi góc là một góc vuông”
Luyện tập 1
Vẽ hình và viết giả thiết, kết luận của định lí:
“ Hai góc đối đỉnh thì bằng nhau”
Phương pháp giải:
Vẽ hình
Giả thiết là điều đề bài cho
Kết luận là điều cần chứng minh
Lời giải chi tiết:
Luyện tập 2
Em hãy chứng minh định lí: “ Hai góc kề bù bằng nhau thì mỗi góc là một góc vuông”
Phương pháp giải:
Vẽ hình, viết giả thiết, kết luận rồi chứng minh
Lời giải chi tiết:
Ta có: \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) ( 2 góc kề bù)
Mà \(\widehat {{A_1}} = \widehat {A_2^{}}\)
\(\begin{array}{l} \Rightarrow \widehat {{A_1}} + \widehat {{A_1}} = 180^\circ \\ \Rightarrow 2.\widehat {{A_1}} = 180^\circ \\ \Rightarrow \widehat {{A_1}} = 180^\circ :2 = 90^\circ \end{array}\)
Vậy \(\widehat {{A_1}} = \widehat {A{}_2} = 90^\circ \) (đpcm)
Tranh luận
Em có ý kiến gì về hai ý kiến trên?
Phương pháp giải:
Chỉ ra ví dụ chứng tỏ khẳng định không đúng.
Lời giải chi tiết:
Em thấy bạn Vuông nói đúng
Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.
Ví dụ:
\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7 Kết nối tri thức
- Giải câu hỏi trang 108, 109 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2
- Lý thuyết quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7 Kết nối tri thức
- Giải câu hỏi trang 108, 109 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2