Câu 51 trang 221 SGK Đại số và Giải tích 11 Nâng cao


Tìm đạo hàm đến cấp được nêu kèm theo của các hàm số sau (n ϵ N*)

Lựa chọn câu để xem lời giải nhanh hơn

Tìm đạo hàm đến cấp được nêu kèm theo của các hàm số sau (n ϵ N*)

LG a

\(y=\sin x,\;y'''\)  

Giải chi tiết:

\(\begin{array}{l}
y' = \cos x\\
y" = - \sin x\\
y''' = - \cos x
\end{array}\)

LG b

 \(y = \sin x\sin 5x,{y^{\left( 4 \right)}}\)

Giải chi tiết:

\(\begin{array}{l}
y = \frac{1}{2}\left( {\cos 4x - \cos 6x} \right)\\
y' = - 2\sin 4x + 3\sin 6x\\
y" = - 8\cos 4x + 18\cos 6x\\
y'" = 32\sin 4x - 108\sin 6x\\
{y^{\left( 4 \right)}} = 128\cos 4x - 648\cos 6x
\end{array}\)

LG c

\(y = {\left( {4 - x} \right)^5},{y^{\left( n \right)}}\)

Giải chi tiết:

\(\begin{array}{l}
y' = - 5{\left( {4 - x} \right)^4}\\
y" = 20{\left( {4 - x} \right)^3}\\
y"' = - 60{\left( {4 - x} \right)^2}\\
{y^{\left( 4 \right)}} = 120\left( {4 - x} \right)\\
{y^{\left( 5 \right)}} = - 120\\
{y^{\left( n \right)}} = 0\,\left( {\forall n \ge 6} \right)
\end{array}\)

LG d

\(y = {1 \over {2 + x}},{y^{\left( n \right)}}\)

Giải chi tiết:

\(\begin{array}{l}
y = \frac{1}{{x + 2}} = {\left( {x + 2} \right)^{ - 1}}\\
y' = - 1{\left( {x + 2} \right)^{ - 2}}\\
y" = \left( { - 1} \right)\left( { - 2} \right){\left( {x + 2} \right)^{ - 3}},...
\end{array}\)

Bằng qui nạp ta chứng minh được :
  \({y^{\left( n \right)}} = \left( { - 1} \right)\left( { - 2} \right)...\left( { - n} \right).{\left( {x + 2} \right)^{ - n - 1}}\)

          \(= {\left( { - 1} \right)^n}.\frac{{n!}}{{{{\left( {x + 2} \right)}^{n + 1}}}}\)

LG e

 \(y = {1 \over {2x + 1}},{y^{\left( n \right)}}\)

Giải chi tiết:

\(\begin{array}{l}
y = {\left( {2x + 1} \right)^{ - 1}}\\
y' = \left( { - 1} \right)\left( {2{{\left( {2x + 1} \right)}^{ - 2}}} \right)\\
y" = \left( { - 1} \right)\left( { - 2} \right){.2^2}{\left( {2x + 1} \right)^{ - 3}},...
\end{array}\)

Bằng qui nạp ta chứng minh được :

 \({y^{\left( n \right)}} = {\left( { - 1} \right)^n}.\frac{{{2^n}.n!}}{{{{\left( {2x + 1} \right)}^{n + 1}}}}\)

LG f

\(y = {\cos ^2}x,{y^{\left( {2n} \right)}}\)

Giải chi tiết:

 Ta có: 

\(\begin{array}{l}
y' = - \sin 2x\\
y" = - 2\cos 2x\\
y"' = {2^2}\sin 2x\\
{y^{\left( 4 \right)}} = {2^3}\cos 2x\\
{y^{\left( 5 \right)}} = - {2^4}\sin 2x\\
{y^{\left( 6 \right)}} = - {2^5}\cos 2x,...
\end{array}\)

Bằng qui nạp ta chứng minh được :

   \({y^{\left( {2n} \right)}} = {\left( { - 1} \right)^n}{.2^{2n - 1}}\cos 2x\)

Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài