Câu 3.32 trang 63 SBT Đại số 10 Nâng cao


Giải bài tập Câu 3.32 trang 63 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Giải và biện luận các phương trình sau:

LG a

\(\left( {x - 2} \right)\left( {x - mx + 3} \right) = 0\)

Lời giải chi tiết:

Với m = 1 hoặc \(m = \dfrac{5}{2},\) tập nghiệm S = {2}.

Với m ≠ 1 và \(m \ne \dfrac{5}{2},\) tập nghiệm \(S = \left\{ {2;\dfrac{3}{{m - 1}}} \right\}\)

LG b

\(\dfrac{{\left( {x + 1} \right)\left( {mx + 2} \right)}}{{x - 3m}} = 0\)

Lời giải chi tiết:

Điều kiện là \(x ≠ 3m\). Khi đó ta có

\(\left( {x + 1} \right)\left( {mx + 2} \right) = 0 \Leftrightarrow x + 1 = 0\) hoặc \(mx + 2 = 0\)

 

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.