Câu 3.32 trang 63 SBT Đại số 10 Nâng cao


Giải bài tập Câu 3.32 trang 63 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Giải và biện luận các phương trình sau:

LG a

\(\left( {x - 2} \right)\left( {x - mx + 3} \right) = 0\)

Lời giải chi tiết:

Với m = 1 hoặc \(m = \dfrac{5}{2},\) tập nghiệm S = {2}.

Với m ≠ 1 và \(m \ne \dfrac{5}{2},\) tập nghiệm \(S = \left\{ {2;\dfrac{3}{{m - 1}}} \right\}\)

LG b

\(\dfrac{{\left( {x + 1} \right)\left( {mx + 2} \right)}}{{x - 3m}} = 0\)

Lời giải chi tiết:

Điều kiện là \(x ≠ 3m\). Khi đó ta có

\(\left( {x + 1} \right)\left( {mx + 2} \right) = 0 \Leftrightarrow x + 1 = 0\) hoặc \(mx + 2 = 0\)

 

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí