Câu 3.27 trang 62 SBT Đại số 10 Nâng cao


Giải bài tập Câu 3.27 trang 62 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Giải và biện luận các phương trình sau theo tham số a :

LG a

\(\dfrac{3}{{x - 1}} = a\)

Lời giải chi tiết:

 Điều kiện : x ≠ 1, đưa phương trình về dạng \(ax = 3 + a\)           (1)

- Nếu a = 0 thì (1) vô nghiệm nên phương trình đã cho vô nghiệm.

- Nếu a ≠ 0 thì (1) \( \Leftrightarrow x = \dfrac{{3 + a}}{a}.\)

Nhận thấy \(\dfrac{{3 + a}}{a} \ne 1.\) Vậy \(x = \dfrac{{3 + a}}{a}\) là nghiệm của phương trình đã cho.

LG b

\(\dfrac{{2a - 1}}{{x - 2}} = a - 3\)

Lời giải chi tiết:

 Điều kiện : x ≠ 2, đưa phương trình về dạng

\(\left( {a - 3} \right)x = 4a - 7\)                (2)

- Nếu a = 3 thì (2) có dạng 0x = 5 nên phương trình vô nghiệm

- Nếu a ≠ 3 thì (1) \( \Leftrightarrow x = \dfrac{{4a - 7}}{{a - 3}}.\) Xét điều kiện x ≠ 2, ta có

\(\dfrac{{4a - 7}}{{a - 3}} \ne 2 \Leftrightarrow 4a - 7 \ne 2a - 6 \Leftrightarrow a \ne \dfrac{1}{2}\)

Do đó, nếu \(a = \dfrac{1}{2}\) thì \(-x = \dfrac{{4a - 7}}{{a - 3}}\) bị loại.

Kết luận. Với a = 3 hoặc \(a = \dfrac{1}{2}\), phương trình vô nghiệm

Với a ≠ 3 và \(a \ne \dfrac{1}{2},\) phương trình có nghiệm \(x = \dfrac{{4a - 7}}{{a - 3}}\)

LG c

\(\dfrac{a}{{ax + 3}} = 2\)

Lời giải chi tiết:

Với a = 0, phương trình vô nghiệm.

Với a ≠ 0, phương trình có nghiệm \(x = \dfrac{{a - 6}}{{2a}}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí