Câu 29 trang 121 SGK Đại số 10 nâng cao


Giải các hệ bất phương trình

Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ bất phương trình

LG a

\(\left\{ \matrix{
{{5x + 2} \over 3} \ge 4 - x \hfill \cr 
{{6 - 5x} \over {13}} < 3x + 1 \hfill \cr} \right.\)

Phương pháp giải:

Giải từng bất phương trình có trong hệ và kết hợp nghiệm.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \left\{ \matrix{
{{5x + 2} \over 3} \ge 4 - x \hfill \cr 
{{6 - 5x} \over {13}} < 3x + 1 \hfill \cr} \right.\cr &\Leftrightarrow \left\{ \matrix{5x + 2 \ge 12 - 3x \hfill \cr 6 - 5x < 39x + 13 \hfill \cr} \right. \cr & \Leftrightarrow \left\{ \begin{array}{l}5x + 3x \ge 12 - 2\\- 5x - 39x < 13 - 6\end{array} \right.\cr & \Leftrightarrow \left\{ \matrix{8x \ge 10 \hfill \cr -44x <  7 \hfill \cr} \right. \cr &\Leftrightarrow \left\{ \matrix{x \ge {5 \over 4} \hfill \cr x > - {7 \over {44}} \hfill \cr} \right. \Leftrightarrow x \ge {5 \over 4} \cr} \) 

Vậy \(S = {\rm{[}}{5 \over 4}; + \infty )\)

LG b

\(\left\{ \matrix{
{(1 - x)^2} > 5 + 3x + {x^2} \hfill \cr 
{(x + 2)^3} < {x^3} + 6{x^2} - 7x - 5 \hfill \cr} \right.\)

Lời giải chi tiết:

 Ta có:

\(\eqalign{
& \left\{ \matrix{
{(1 - x)^2} > 5 + 3x + {x^2} \hfill \cr 
{(x + 2)^3} < {x^3} + 6{x^2} - 7x - 5 \hfill \cr} \right. \cr&\Leftrightarrow \left\{ \matrix{
1 - 2x + {x^2} > 5 + 3x + {x^2} \hfill \cr 
{x^3} + 6{x^2} + 12x + 8 < {x^3} + 6{x^2} - 7x - 5 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
5x < - 4 \hfill \cr 
19x < - 13 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x < - {4 \over 5} \hfill \cr 
x < - {{13} \over {19}} \hfill \cr} \right. \cr &\Leftrightarrow x < - {4 \over 5} \cr} \)

Vậy \(S = ( - \infty ; - {4 \over 5})\)

LG c

\(\left\{ \matrix{
{{4x - 5} \over 7}< x + 3 \hfill \cr 
{{3x + 8} \over 4} > 2x - 5 \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \left\{ \matrix{
{{4x - 5} \over 7} < x + 3 \hfill \cr 
{{3x + 8} \over 4} > 2x - 5 \hfill \cr} \right. \cr &\Leftrightarrow \left\{ \matrix{
4x - 5 < 7x + 21 \hfill \cr 
3x + 8 > 8x - 20 \hfill \cr} \right. \cr& \Leftrightarrow \left\{ \begin{array}{l}4x - 7x < 21 + 5\\3x - 8x > - 20 - 8\end{array} \right.\cr &\Leftrightarrow \left\{ \matrix{-3x < 26 \hfill \cr -5x > -28 \hfill \cr} \right. \cr & \Leftrightarrow \left\{ \matrix{x > - {{26} \over 3} \hfill \cr x < {{28} \over 5} \hfill \cr} \right. \cr &\Leftrightarrow - {{26} \over 3} < x < {{28} \over 5} \cr} \)

Vậy \(S = ( - {{26} \over 3};{{28} \over 5})\)

LG d

\(\left\{ \matrix{
x - 1 \le 2x - 3 \hfill \cr 
3x < x + 5 \hfill \cr 
{{5 - 3x} \over 2} \le x - 3 \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

\(\left\{ \matrix{
x - 1 \le 2x - 3 \hfill \cr 
3x < x + 5 \hfill \cr 
{{5 - 3x} \over 2} \le x - 3 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}
x - 2x \le - 3 + 1\\
3x - x < 5\\
5 - 3x \le 2x - 6
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
- x \le - 2\\
2x < 5\\
- 3x - 2x \le - 6 - 5
\end{array} \right.  \) \(\Leftrightarrow \left\{ \begin{array}{l}
x \ge 2\\
x < \frac{5}{2}\\
- 5x \le - 11
\end{array} \right.  \) \( \Leftrightarrow \left\{ \begin{array}{l}
x \ge 2\\
x < \frac{5}{2}\\
x \ge \frac{{11}}{5}
\end{array} \right.  \) \(\Leftrightarrow \frac{{11}}{5} \le x < \frac{5}{2}\)

Vậy \(S = {\rm{[}}{{11} \over 5};{5 \over 2})\)

Loigioihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.7 trên 10 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài