Câu 20 trang 29 SGK Đại số và Giải tích 11 Nâng cao


Tìm nghiệm của các phương trình sau trên khoảng đã cho

Lựa chọn câu để xem lời giải nhanh hơn

Tìm nghiệm của các phương trình sau trên khoảng đã cho

LG a

\(\tan \left( {2x - {{15}^0}} \right) = 1\) với \( - {180^0} < x < {90^0}\)

Lời giải chi tiết:

\(\tan \left( {2x-{{15}^0}} \right) = 1\)

\( \Leftrightarrow 2x - {15^0} = {45^0} + k{180^0}\)

\(\Leftrightarrow {\rm{ }}2x{\rm{ }} = {\rm{ }}{15^0} + {\rm{ }}{45^0} + {\rm{ }}k{180^0} \)

\(\Leftrightarrow {\rm{ }}x{\rm{ }} = {\rm{ }}{30^0} + {\rm{ }}k{90^0}\)

\( - {180^0} < {\rm{ }}{30^0} + {\rm{ }}k{90^0} < {\rm{ }}{90^0}\)

\(\begin{array}{l}
\Leftrightarrow - {210^0} < k{90^0} < {60^0}\\
\Leftrightarrow - \frac{7}{3} < k < \frac{2}{3}
\end{array}\)

\(\Leftrightarrow k \in \left\{ { - 2; - 1;0} \right\}\) (do k nguyên)

Vậy các nghiệm của phương trình là \(x =  - {150^0},{\rm{ }}x{\rm{ }} =  - {60^0}\) và \(x{\rm{ }} = {\rm{ }}{30^0}\)

LG b

\(\cot 3x = - {1 \over {\sqrt 3 }}\,\text{ với }\, - {\pi \over 2} < x < 0.\)

Lời giải chi tiết:

\(\begin{array}{l}
\cot 3x = - \frac{1}{{\sqrt 3 }} = \cot \left( { - \frac{\pi }{3}} \right)\\
\Leftrightarrow 3x = - \frac{\pi }{3} + k\pi \\
\Leftrightarrow x = - \frac{\pi }{9} + \frac{{k\pi }}{3}
\end{array}\)

Do \(- {\pi \over 2} < x < 0\) nên:

\(\begin{array}{l}
- \frac{\pi }{2} < - \frac{\pi }{9} + \frac{{k\pi }}{3} < 0\\
\Leftrightarrow - \frac{{7\pi }}{{18}} < \frac{{k\pi }}{3} < \frac{\pi }{9}\\
\Leftrightarrow - \frac{{7}}{6} < k < \frac{1}{3}
\end{array}\)

Vì k nguyên nên \(k=-1, k=0\).

Vậy các nghiệm của phương trình là \(x = - {{4\pi } \over 9}\,\text{ và }\,x = - {\pi \over 9}.\)

Loigiaihay.com


Bình chọn:
4.5 trên 8 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.