Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 2. Phương trình lượng giác cơ bản
Câu 20 trang 29 SGK Đại số và Giải tích 11 Nâng cao>
Tìm nghiệm của các phương trình sau trên khoảng đã cho
Tìm nghiệm của các phương trình sau trên khoảng đã cho
LG a
\(\tan \left( {2x - {{15}^0}} \right) = 1\) với \( - {180^0} < x < {90^0}\)
Lời giải chi tiết:
\(\tan \left( {2x-{{15}^0}} \right) = 1\)
\( \Leftrightarrow 2x - {15^0} = {45^0} + k{180^0}\)
\(\Leftrightarrow {\rm{ }}2x{\rm{ }} = {\rm{ }}{15^0} + {\rm{ }}{45^0} + {\rm{ }}k{180^0} \)
\(\Leftrightarrow {\rm{ }}x{\rm{ }} = {\rm{ }}{30^0} + {\rm{ }}k{90^0}\)
\( - {180^0} < {\rm{ }}{30^0} + {\rm{ }}k{90^0} < {\rm{ }}{90^0}\)
\(\begin{array}{l}
\Leftrightarrow - {210^0} < k{90^0} < {60^0}\\
\Leftrightarrow - \frac{7}{3} < k < \frac{2}{3}
\end{array}\)
\(\Leftrightarrow k \in \left\{ { - 2; - 1;0} \right\}\) (do k nguyên)
Vậy các nghiệm của phương trình là \(x = - {150^0},{\rm{ }}x{\rm{ }} = - {60^0}\) và \(x{\rm{ }} = {\rm{ }}{30^0}\)
LG b
\(\cot 3x = - {1 \over {\sqrt 3 }}\,\text{ với }\, - {\pi \over 2} < x < 0.\)
Lời giải chi tiết:
\(\begin{array}{l}
\cot 3x = - \frac{1}{{\sqrt 3 }} = \cot \left( { - \frac{\pi }{3}} \right)\\
\Leftrightarrow 3x = - \frac{\pi }{3} + k\pi \\
\Leftrightarrow x = - \frac{\pi }{9} + \frac{{k\pi }}{3}
\end{array}\)
Do \(- {\pi \over 2} < x < 0\) nên:
\(\begin{array}{l}
- \frac{\pi }{2} < - \frac{\pi }{9} + \frac{{k\pi }}{3} < 0\\
\Leftrightarrow - \frac{{7\pi }}{{18}} < \frac{{k\pi }}{3} < \frac{\pi }{9}\\
\Leftrightarrow - \frac{{7}}{6} < k < \frac{1}{3}
\end{array}\)
Vì k nguyên nên \(k=-1, k=0\).
Vậy các nghiệm của phương trình là \(x = - {{4\pi } \over 9}\,\text{ và }\,x = - {\pi \over 9}.\)
Loigiaihay.com




