Câu 19 trang 143 SGK Đại số và Giải tích 11 Nâng cao


Đề bài

Tổng của một cấp số nhân lùi vô hạn là \({5 \over 3},\) tổng ba số hạng đầu tiên của nó là \({{39} \over {25}}\) . Tìm số hạng đầu và công bội của cấp số đó.

Phương pháp giải - Xem chi tiết

Tổng cấp số nhân lùi vô hạn \(S = \dfrac{{{u_1}}}{{1 - q}}\)

Lời giải chi tiết

Ta có:

\(\eqalign{
& S = {{{u_1}} \over {1 - q}} = {5 \over 3}\,\,\,\left( 1 \right) \cr 
& {u_1} + {u_2} + {u_3} = {u_1}\left( {1 + q + {q^2}} \right) = {{39} \over {25}}\cr 
& \Rightarrow {{{u_1}} \over {1 - q}}\left( {1 - {q^3}} \right) = {{39} \over {25}}\,\,\left( 2 \right) \cr} \)

Thay (1) vào (2) ta được :\({5 \over 3}\left( {1 - {q^3}} \right) = {{39} \over {25}}\) \( \Leftrightarrow 1 - {q^3} = \frac{{117}}{{125}} \Leftrightarrow {q^3} = \frac{8}{{125}}\) \( \Rightarrow q = {2 \over 5}\)

Từ (1) suy ra \({u_1} = \frac{5}{3}\left( {1 - q} \right) = \frac{5}{3}\left( {1 - \frac{2}{5}} \right) = 1\).

Vậy \({u_1} = 1,q = {2 \over 5}\)

Loigiaihay.com


Bình chọn:
4 trên 4 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài