Câu 11 trang 142 SGK Đại số và Giải tích 11 Nâng cao


Tìm giới hạn của các dãy số (un) với

Lựa chọn câu để xem lời giải nhanh hơn

 Tìm giới hạn của các dãy số (un) với

LG a

\({u_n} = - 2{n^3} + 3n + 5\)

Lời giải chi tiết:

Ta có:  \({u_n} = {n^3}\left( { - 2 + {3 \over {{n^2}}} + {5 \over {{n^3}}}} \right)\)

Vì  \({{\mathop{\rm limn}\nolimits} ^3} = + \infty \) và \(\lim \left( { - 2 + {3 \over {{n^2}}} + {5 \over {{n^3}}}} \right) = - 2 < 0\)

Nên  \(\lim {u_n} = - \infty \)

LG b

\({u_n} = \sqrt {3{n^4} + 5{n^3} - 7n} \)

Lời giải chi tiết:

Ta có:  \({u_n} = \sqrt {{n^4}\left( {3 + \frac{5}{n} - \frac{7}{{{n^3}}}} \right)}  \) \(= {n^2}\sqrt {3 + {5 \over n} - {7 \over {{n^3}}}} \)

Vì  \(\lim {n^2} = + \infty \) và \(\lim \sqrt {3 + {5 \over n} - {7 \over {{n^3}}}} = \sqrt 3 > 0\)

Nên  \(\lim {u_n} = + \infty \)

Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.