Câu 11 trang 142 SGK Đại số và Giải tích 11 Nâng cao


Tìm giới hạn của các dãy số (un) với

Lựa chọn câu để xem lời giải nhanh hơn

 Tìm giới hạn của các dãy số (un) với

LG a

\({u_n} = - 2{n^3} + 3n + 5\)

Lời giải chi tiết:

Ta có:  \({u_n} = {n^3}\left( { - 2 + {3 \over {{n^2}}} + {5 \over {{n^3}}}} \right)\)

Vì  \({{\mathop{\rm limn}\nolimits} ^3} = + \infty \) và \(\lim \left( { - 2 + {3 \over {{n^2}}} + {5 \over {{n^3}}}} \right) = - 2 < 0\)

Nên  \(\lim {u_n} = - \infty \)

LG b

\({u_n} = \sqrt {3{n^4} + 5{n^3} - 7n} \)

Lời giải chi tiết:

Ta có:  \({u_n} = \sqrt {{n^4}\left( {3 + \frac{5}{n} - \frac{7}{{{n^3}}}} \right)}  \) \(= {n^2}\sqrt {3 + {5 \over n} - {7 \over {{n^3}}}} \)

Vì  \(\lim {n^2} = + \infty \) và \(\lim \sqrt {3 + {5 \over n} - {7 \over {{n^3}}}} = \sqrt 3 > 0\)

Nên  \(\lim {u_n} = + \infty \)

Loigiaihay.com


Bình chọn:
3.3 trên 3 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài