Câu 16 trang 143 SGK Đại số và Giải tích 11 Nâng cao


Tìm các giới hạn sau :

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các giới hạn sau :

LG a

 \(\lim {{{n^2} + 4n - 5} \over {3{n^3} + {n^2} + 7}}\)

Phương pháp giải:

Chia cả tử và mẫu của các biểu thức cần tính giới hạn cho lũy thừa bậc cao nhất của n.

Lời giải chi tiết:

\(\eqalign{
& \lim {{{n^2} + 4n - 5} \over {3{n^3} + {n^2} + 7}} \cr &= \lim {{{n^3}\left( {{1 \over n} + {4 \over {{n^2}}} - {5 \over {{n^3}}}} \right)} \over {{n^3}\left( {3 + {1 \over n} + {7 \over {{n^3}}}} \right)}} \cr 
& = \lim {{{1 \over n} + {4 \over {{n^2}}} - {5 \over {{n^3}}}} \over {3 + {1 \over n} + {7 \over {{n^3}}}}} = {0 \over 3} = 0 \cr} \)

LG b

\(\lim {{{n^5} + {n^4} - 3n - 2} \over {4{n^3} + 6{n^2} + 9}}\)

Lời giải chi tiết:

\(\eqalign{
& \lim {{{n^5} + {n^4} - 3n - 2} \over {4{n^3} + 6{n^2} + 9}} \cr &= \lim {n^2}{{{n^3}\left( {1 + {1 \over n} - {3 \over {{n^4}}} - {2 \over {{n^5}}}} \right)} \over {{n^3}\left( {4 + {6 \over n} + {9 \over {{n^3}}}} \right)}} \cr 
& = {{\mathop{\rm limn}\nolimits} ^2}{{\left( {1 + {1 \over n} - {3 \over {{n^4}}} - {2 \over {{n^5}}}} \right)} \over {\left( {4 + {6 \over n} + {9 \over {{n^3}}}} \right)}} = + \infty \cr} \)

Vì \(\lim {n^2} =  + \infty \) và \(\lim \dfrac{{1 + \frac{1}{n} - \frac{3}{{{n^4}}} - \frac{2}{{{n^5}}}}}{{4 + \frac{6}{n} + \frac{9}{{{n^3}}}}} = \dfrac{1}{4} > 0\).

LG c

\(\lim {{\sqrt {2{n^4} + 3n - 2} } \over {2{n^2} - n + 3}}\)

Lời giải chi tiết:

\(\eqalign{
& \lim {{\sqrt {2{n^4} + 3n - 2} } \over {2{n^2} - n + 3}} \cr & = \lim \frac{{\sqrt {{n^4}\left( {2 + \frac{3}{{{n^3}}} - \frac{2}{{{n^4}}}} \right)} }}{{{n^2}\left( {1 - \frac{1}{n} + \frac{3}{{{n^2}}}} \right)}}\cr &= \lim {{{n^2}\sqrt {2 + {3 \over {n^3}} - {2 \over {{n^4}}}} } \over {{n^2}\left ({2 - {1 \over n} + {3 \over{ {n^2}}}}\right )}} \cr 
& = \lim {{\sqrt {2 + {n \over 3} - {2 \over {{n^2}}}} } \over {2 - {1 \over n} + {3 \over {{n^2}}}}} = {{\sqrt 2 } \over 2} \cr} \)

LG d

 \(\lim {{{3^n} - {{2.5}^n}} \over {7 + {{3.5}^n}}}\)

Phương pháp giải:

Chia cả tử và mẫu cho 5n

Lời giải chi tiết:

Chia cả tử và mẫu cho 5n ta được:

\(\eqalign{
& \lim {{{3^n} - {{2.5}^n}} \over {7 + {{3.5}^n}}}  = \lim \frac{{\frac{{{3^n}}}{{{5^n}}} - 2}}{{\frac{7}{{{5^n}}} + 3}}\cr &= \lim {{{{\left( {{3 \over 5}} \right)}^n} - 2} \over {7.{{\left( {{1 \over 5}} \right)}^n} + 3}} = - {2 \over 3} \cr 
& \text{vì}\,\,\lim {\left( {{3 \over 5}} \right)^n} = \lim {\left( {{1 \over 5}} \right)^n} = 0 \cr} \)

Loigiaihay.com


Bình chọn:
3.7 trên 7 phiếu

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài