Câu 12 trang 142 SGK Đại số và Giải tích 11 Nâng cao


Tìm giới hạn của các dãy số (un) với

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giới hạn của các dãy số (un) với

LG a

\({u_n} = {{ - 2{n^3} + 3n - 2} \over {3n - 2}}\)

Phương pháp giải:

Chia cả tử và mẫu của biểu thức cần tính giới hạn cho lũy thừa bậc cao nhất của n.

Lời giải chi tiết:

 Ta có:

\(\displaystyle {u_n} = {{{n^3}\left( { - 2 + {3 \over {{n^2}}} - {2 \over {{n^3}}}} \right)} \over {{n^3}\left( {{3 \over {{n^2}}} - {2 \over {{n^3}}}} \right)}} \) \(\displaystyle  = {{ - 2 + {3 \over {{n^2}}} - {2 \over {{n^3}}}} \over {{3 \over {{n^2}}} - {2 \over {{n^3}}}}}\)

Vì  \(\displaystyle \lim \left( { - 2 + {3 \over {{n^2}}} - {2 \over {{n^2}}}} \right) = - 2 < 0\)

Và  \(\displaystyle \lim \left( {{3 \over {{n^2}}} - {2 \over {{n^3}}}} \right) = 0;\)

Nên  \(\displaystyle \lim {u_n} = - \infty \)

Quảng cáo

Lộ trình SUN 2026

LG b

\({u_n} = {{\root 3 \of {{n^6} - 7{n^3} - 5n + 8} } \over {n + 12}}\)

Lời giải chi tiết:

Chia tử và mẫu của phân thức cho n, ta được :

\({u_n} = \dfrac{{\dfrac{{\sqrt[3]{{{n^6} - 7{n^3} - 5n + 8}}}}{n}}}{{\dfrac{{n + 12}}{n}}} \) \(= \dfrac{{\sqrt[3]{{\dfrac{{{n^6} - 7{n^3} - 5n + 8}}{{{n^3}}}}}}}{{1 + \dfrac{{12}}{n}}} \) \(= \dfrac{{\sqrt[3]{{{n^3} - 7 - \dfrac{5}{{{n^2}}} + \dfrac{8}{{{n^3}}}}}}}{{1 + \dfrac{{12}}{n}}} \) \( = \dfrac{{\sqrt[3]{{{n^3}\left( {1 - \dfrac{7}{{{n^3}}} - \dfrac{5}{{{n^5}}} + \dfrac{8}{{{n^6}}}} \right)}}}}{{1 + \dfrac{{12}}{n}}}\) \(= \dfrac{{n\sqrt[3]{{1 - \dfrac{7}{{{n^3}}} - \dfrac{5}{{{n^5}}} + \dfrac{8}{{{n^6}}}}}}}{{1 + \dfrac{{12}}{n}}}\)

\(\eqalign{
& \text{ Vì }\,\lim n\root 3 \of {1 - {7 \over {{n^3}}} - {5 \over {{n^5}}} + {8 \over n^6}} = + \infty \cr 
& \text{ và }\,\lim \left( {1 + {{12} \over n}} \right) = 1 > 0 \cr 
& \text{ nên }\,{{\mathop{\rm lim u}\nolimits} _n} = + \infty \cr} \)

 Loigiaihay.com


Bình chọn:
4.4 trên 8 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí