Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 2. Phương trình lượng giác cơ bản
Câu 14 trang 28 SGK Đại số và Giải tích 11 Nâng cao>
Giải các phương trình sau :
Giải các phương trình sau :
a. \(\sin 4x = \sin {\pi \over 5}\)
b. \(\sin \left( {{{x + \pi } \over 5}} \right) = - {1 \over 2}\)
c. \(\cos {x \over 2} = \cos \sqrt 2 \)
d. \(\cos \left( {x + {\pi \over {18}}} \right) = {2 \over 5}.\)
LG a
\(\sin 4x = \sin {\pi \over 5}\)
Lời giải chi tiết:
Ta có:
\(\sin 4x = \sin {\pi \over 5} \)
\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
4x = \frac{\pi }{5} + k2\pi \\
4x = \pi - \frac{\pi }{5} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{{20}} + \frac{{k\pi }}{2}\\
4x = \frac{{4\pi }}{5} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{{20}} + \frac{{k\pi }}{2}\\
x = \frac{\pi }{5} + \frac{{k\pi }}{2}
\end{array} \right.,k\in Z
\end{array}\)
LG b
\(\sin \left( {{{x + \pi } \over 5}} \right) = - {1 \over 2}\)
Lời giải chi tiết:
Vì \( - {1 \over 2} =- \sin {\pi \over 6} = \sin \left( { - {\pi \over 6}} \right)\) nên:
\(\sin \left( {{{x + \pi } \over 5}} \right) = - {1 \over 2}= \sin \left( { - {\pi \over 6}} \right) \)
\(\Leftrightarrow \left[ {\matrix{{{{x + \pi } \over 5} = - {\pi \over 6} + k2\pi } \cr {{{x + \pi } \over 5} = \pi + {\pi \over 6} + k2\pi } \cr} } \right. \)
\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
x + \pi = - \frac{{5\pi }}{6} + k.10\pi \\
x + \pi = \frac{{35\pi }}{6} + k.10\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - \frac{{11\pi }}{6} + k.10\pi \\
x = \frac{{29\pi }}{6} + k.10\pi
\end{array} \right.,k\in Z
\end{array}\)
LG c
\(\cos {x \over 2} = \cos \sqrt 2 \)
Lời giải chi tiết:
\(\cos {x \over 2} = \cos \sqrt 2 \)
\(\Leftrightarrow {x \over 2} = \pm \sqrt 2 + k2\pi \)
\(\Leftrightarrow x = \pm 2\sqrt 2 + k4\pi \,\left( {k \in\mathbb Z} \right)\)
LG d
\(\cos \left( {x + {\pi \over {18}}} \right) = {2 \over 5}.\)
Lời giải chi tiết:
\(\cos \left( {x + {\pi \over {18}}} \right) = {2 \over 5}\)
\(\begin{array}{l}
\Leftrightarrow x + \frac{\pi }{{18}} = \pm \arccos \frac{2}{5} + k2\pi \\
\Leftrightarrow x = \pm \arccos \frac{2}{5} - \frac{\pi }{{18}} + k2\pi ,k\in Z
\end{array}\)
Cách trình bày khác:
Vì \(0 < {2 \over 5} < 1\) nên có số \(α\) sao cho \(\cos \alpha = {2 \over 5}.\) Do đó :
\(\cos \left( {x + {\pi \over {18}}} \right) = {2 \over 5}\)
\(\Leftrightarrow \cos \left( {x + {\pi \over {18}}} \right) = \cos \alpha\)
\(\Leftrightarrow x = \pm \alpha - {\pi \over {18}} + k2\pi ,k \in \mathbb Z\)
Loigiaihay.com




