Bài 9 trang 15 SGK Hình học 12 Nâng cao

Bình chọn:
3.5 trên 6 phiếu

Chứng minh rằng các phép tịnh tiến, đối xứng trục, đối xứng tâm là những phép dời hình.

Bài 9. Chứng minh rằng các phép tịnh tiến, đối xứng trục, đối xứng tâm là những phép dời hình.

Giải

a) 

 

Giả sử \({T_{\overrightarrow v }}\) là phép tịnh tiến theo vectơ \(\overrightarrow v \)

\(\eqalign{
& {T_{\overrightarrow v }}:\,M \to M' \cr
& \,\,\,\,\,\,\,\,N \to N' \cr} \)

Ta có \(\overrightarrow {MM'}  = \overrightarrow {NN'}  = \overrightarrow v  \Rightarrow \overrightarrow {MN}  = \overrightarrow {M'N'}  \Rightarrow MN = M'N'\)
Vậy phép tịnh tiến là một phép dời hình.
b)

Giả sử \({\tilde N_d}\) là phép đối xứng qua đường thẳng \(d\)
Giả sử

\({{\tilde N}_d}:M \to M'\)

         \(N \to N'\)

Gọi \(H\) và \(K\) lần lượt là trung điểm của \(MM’\) và \(NN’\).
Ta có:

\(\eqalign{
& \overrightarrow {MN} + \overrightarrow {M'N'} = \left( {\overrightarrow {MH} + \overrightarrow {HK} + \overrightarrow {KN} } \right) + \left( {\overrightarrow {M'H} + \overrightarrow {HK} + \overrightarrow {KN'} } \right) = 2\overrightarrow {HK} \cr
& \overrightarrow {MN} - \overrightarrow {M'N'} = \overrightarrow {HN} - \overrightarrow {HM} - \overrightarrow {HN'} + \overrightarrow {HM'} = \overrightarrow {N'N} + \overrightarrow {MM'} \cr} \)

Vì \(\overrightarrow {MM'}  \bot \overrightarrow {HK} \) và \(\overrightarrow {N'N}  \bot HK\) nên

\(\eqalign{
& {\overrightarrow {MN} ^2} - {\overrightarrow {M'N'} ^2} = \left( {\overrightarrow {MN} + \overrightarrow {M'N'} } \right)\left( {\overrightarrow {MN} - \overrightarrow {M'N'} } \right) = 2\overrightarrow {HK} \left( {\overrightarrow {N'N} + \overrightarrow {MM'} } \right) = 0 \cr
& \Rightarrow M{N^2} = M'N{'^2} \Rightarrow MN = M'N' \cr} \)

Vậy phép đối xứng qua \(d\) là phép dời hình.
c) Nếu phép đối xứng qua tâm \(O\) biến hai điểm \(M, N\) lần lượt thành hai điểm \(M’, N’\) thì \(\overrightarrow {OM'}  =  - \overrightarrow {OM} ;\overrightarrow {ON'}  =  - \overrightarrow {ON} \)
suy ra \(\overrightarrow {M'N'}  = \overrightarrow {ON'}  - \overrightarrow {OM'}  =  - \overrightarrow {ON}  + \overrightarrow {OM}  = \overrightarrow {NM}  \Rightarrow M'N' = MN\)
Vậy phép đối xứng tâm \(O\) là một phép dời hình.

loigiaihay.com

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan