Bài 8 Trang 145 SGK Đại số và Giải tích 12 Nâng cao


tìm nguyên hàm của các hàm số sau:

Lựa chọn câu để xem lời giải nhanh hơn

Tìm nguyên hàm của các hàm số sau:

LG a

\(f\left( x \right) = {x^2}\left( {{{{x^3}} \over {18}} - 1} \right)^5;\) 

Lời giải chi tiết:

Đặt \(u = {{{x^3}} \over {18}} - 1 \Rightarrow du = {1 \over 6}{x^2}dx\) \( \Rightarrow {x^2}dx = 6du\)   

Do đó \(\int {{x^2}{{\left( {{{{x^3}} \over {18}} - 1} \right)}^5}dx}\) \( = \int {6{u^5}du }\) \(= {u^6}  + C\) \( = {\left( {{{{x^3}} \over {18}} - 1} \right)^6} + C\) 

LG b

\(f\left( x \right) = {1 \over {{x^2}}}{\mathop{\rm s}\nolimits} {\rm{in}}{1 \over x}\cos {1 \over x};\)

Lời giải chi tiết:

Đăt \(u = \sin {1 \over x} \Rightarrow du =  - {1 \over {{x^2}}}\cos {1 \over x}dx \) \(\Rightarrow {1 \over {{x^2}}}\cos {1 \over x}dx =  - du\) 

\( \Rightarrow \int {{1 \over {{x^2}}}\sin {1 \over x}\cos {1 \over x}dx }\) \(=  - \int {udu }\) \(=  - {{{u^2}} \over 2} + C \) \(=  - {1 \over 2}{{\sin }^2}\left( {{1 \over x}} \right) + C \) 

LG c

\(f\left( x \right) = {x^3}{e^x};\)

Lời giải chi tiết:

Đặt

\(\left\{ \matrix{
u = {x^3} \hfill \cr 
dv = {e^x}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = 3{x^2}dx \hfill \cr 
v = {e^x} \hfill \cr} \right. \) \(\Rightarrow I = \int {{x^3}{e^x}dx = {x^3}{e^x} - 3\int {{x^2}{e^x}dx\,\,\left( 1 \right)} } \)

Tính \({I_1} = \int {{x^2}} {e^x}dx\)

Đặt

\(\left\{ \matrix{
u = {x^2} \hfill \cr 
dv = {e^x}dx \hfill \cr} \right. \) \(\Rightarrow \left\{ \matrix{
du = 2xdx \hfill \cr 
v = {e^x} \hfill \cr} \right.\) \( \Rightarrow {I_1} = {x^2}{e^x} - 2\int {x{e^x}dx\,\,\,\,\left( 2 \right)} \)

Tính \({I_2} = \int {x{e^x}dx} \)

Đặt 

\(\left\{ \matrix{
u = x \hfill \cr 
dv = {e^x}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = dx \hfill \cr 
v = {e^x} \hfill \cr} \right. \) \(\Rightarrow {I_2} = x{e^x} - \int {{e^x}dx } \) \(=xe^x-e^x+C_2\) \(= {e^x}\left( {x - 1} \right) + C_2 \)

Thay \({I_2}\) vào (2) ta được: \({I_1} = {x^2}{e^x} - 2{e^x}\left( {x - 1} \right) +C_1\) \(= {e^x}\left( {{x^2} - 2x + 2} \right) + C_1\)

Thay \({I_1}\) vào (1) ta được : \(I = {x^3}{e^x} - 3{e^x}\left( {{x^2} - 2x + 2} \right)+C\) \( = {e^x}\left( {{x^3} - 3{x^2} + 6x - 6} \right) + C\)

LG d

\(f\left( x \right) = {e^{\sqrt {3x - 9} }}.\)

Lời giải chi tiết:

Đặt \(t = \sqrt {3x - 9} \) \( \Rightarrow {t^2} = 3x - 9 \Rightarrow 2tdt = 3dx\) \( \Rightarrow dx = \dfrac{2}{3}tdt\)

\(I = \int {f\left( x \right)dx}  = \int {\dfrac{2}{3}t{e^t}dt} \) \( = \dfrac{2}{3}\int {t{e^t}dt} \) (1)

Đặt \(\left\{ \begin{array}{l}u = t\\{e^t}dt = dv\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dt\\v = {e^t}\end{array} \right.\)

\( \Rightarrow \int {t{e^t}dt}  = t{e^t} - \int {{e^t}dt} \) \( = t{e^t} - {e^t} + {C_1} = \left( {t - 1} \right){e^t} + {C_1}\)

Thay vào (1) ta được \(I = \dfrac{2}{3}\left( {t - 1} \right){e^t} + C\) \( = \dfrac{2}{3}\left( {\sqrt {3x - 9}  - 1} \right){e^{\sqrt {3x - 9} }} + C\)

  Loigiaihay.com


Bình chọn:
3.3 trên 4 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài