Bài 72 trang 154 SGK Đại số 10 nâng cao


Giải các bất phương trình sau

Lựa chọn câu để xem lời giải nhanh hơn

Giải các bất phương trình sau

LG a

\(\sqrt {{x^2} + 6x + 8}  \le 2x + 3\)

Phương pháp giải:

Áp dụng:

\(\sqrt A \le B \Leftrightarrow \left\{ \matrix{
A \ge 0 \hfill \cr 
B \ge 0 \hfill \cr 
A \le {B^2} \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \sqrt {{x^2} + 6x + 8} \le 2x + 3 \cr&\Leftrightarrow \left\{ \matrix{
{x^2} + 6x + 8 \ge 0 \hfill \cr 
2x + 3 \ge 0 \hfill \cr 
{x^2} + 6x + 8 \le {(2x + 3)^2} \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \begin{array}{l}(x+2)(x+4) \ge 0\\2x + 3 \ge 0\\{x^2} + 6x + 8 \le 4{x^2} + 12x + 9\end{array} \right.\cr &\Leftrightarrow \left\{ \matrix{\left[ \matrix{x \le - 4 \hfill \cr x \ge - 2 \hfill \cr} \right. \hfill \cr x \ge - {3 \over 2} \hfill \cr 3{x^2} + 6x + 1 \ge 0 \hfill \cr} \right. \cr&\Leftrightarrow \left\{ \matrix{x \ge - {3 \over 2} \hfill \cr \left[ \matrix{x \le {{ - 3 - \sqrt 6 } \over 3} \hfill \cr x \ge {{ - 3 + \sqrt 6 } \over 3} \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow x \ge {{\sqrt 6 } \over 3} - 1 \cr} \)

Vậy \(S = {\rm{[}}{{\sqrt 6 } \over 3} - 1, + \infty )\)

LG b

\({{2x - 4} \over {\sqrt {{x^2} - 3x - 10} }} > 1\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {{2x - 4} \over {\sqrt {{x^2} - 3x - 10} }} > 1\cr& \Leftrightarrow \left\{ \matrix{
{x^2} - 3x - 10 > 0 \hfill \cr 
\sqrt {{x^2} - 3x - 10} < 2x - 4 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
{x^2} - 3x - 10 > 0 \hfill \cr 
2x - 4 > 0 \hfill \cr 
{x^2} - 3x - 10 < {(2x - 4)^2} \hfill \cr} \right. \cr& \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 3x - 10 > 0\\2x - 4 > 0\\{x^2} - 3x - 10 < 4{x^2} - 16x + 16\end{array} \right.\cr &\Leftrightarrow \left\{ \matrix{\left[ \matrix{x < - 2 \hfill \cr x > 5 \hfill \cr} \right. \hfill \cr x > 2 \hfill \cr 3{x^2} - 13x + 26 > 0\,\,(\forall x) \hfill \cr} \right. \cr &\Leftrightarrow x > 5 \cr} \)

Vậy \(S = (5, +∞)\)

LG c

\(6\sqrt {(x - 2)(x - 32)}  \le {x^2} - 34x + 48\)

Phương pháp giải:

Đặt ẩn phụ \(y = \sqrt {(x - 2)(x - 32)}\).

Lời giải chi tiết:

Đặt \(y = \sqrt {(x - 2)(x - 32)}  \) \(= \sqrt {{x^2} - 34x + 64} \,\,\,(y \ge 0)\)

\( \Rightarrow {y^2} = {x^2} - 34x + 64\)

⇒ x2 – 34x = y2 – 64

Ta có bất phương trình:

6y ≤ y2  - 64+28

⇔ y2 – 6y – 16 ≥ 0

⇔ y ≤ - 2 hoặc y ≥ 8

Với điều kiện y ≥ 0, ta được y ≥ 8

\( \Rightarrow \sqrt {{x^2} - 34x + 64}  \ge 8\)

⇔  x2 – 34x + 64 ≥ 64 ⇔  x2 – 34x ≥ 0

⇔  x ≤ 0 hoặc x ≥ 34

Vậy \(S = (-∞, 0] ∪ [34, +∞)\)

Loigiaihay.com


Bình chọn:
4.1 trên 14 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí