Bài 5 Trang 145 SGK Đại số và Giải tích 12 Nâng cao


Dùng phương pháp đổi biến số, tìm nguyên hàm của các hàm số sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Dùng phương pháp đổi biến số, tìm nguyên hàm của các hàm số sau:

LG a

\(f\left( x \right) = {{9{x^2}} \over {\sqrt {1 - {x^3}} }}\)

Lời giải chi tiết:

Đặt \(\sqrt {1 - {x^3}}  = u\) \( \Rightarrow {u^2} = 1 - {x^3}\) \( \Rightarrow 2udu =  - 3{x^2}dx\)

\( \Rightarrow \int {f\left( x \right)dx} \)\( = \int {\dfrac{{ - 3.\left( { - 3{x^2}} \right)dx}}{{\sqrt {1 - {x^3}} }}} \) \( = \int {\dfrac{{ - 3.2udu}}{u}} \)  \( =  - 6\int {du}  =  - 6u + C\) \( =  - 6\sqrt {1 - {x^3}}  + C\)

Cách khác:

Đặt \(1 - {x^3} = u \Rightarrow du =  - 3{x^2}dx\)

\( \Rightarrow \int {f\left( x \right)dx} \)\( = \int {\dfrac{{ - 3.\left( { - 3{x^2}dx} \right)}}{{\sqrt {1 - {x^3}} }}}  = \int {\dfrac{{ - 3du}}{{\sqrt u }}} \) \( = \int { - 3{u^{ - \dfrac{1}{2}}}du}  =  - 3.\dfrac{{{u^{ - \dfrac{1}{2} + 1}}}}{{ - \dfrac{1}{2} + 1}} + C\) \( =  - 3.\dfrac{{{u^{\dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + C =  - 6{u^{\dfrac{1}{2}}} + C\)  \( =  - 6\sqrt u  + C =  - 6\sqrt {1 - {x^3}}  + C\)

LG b

\(f\left( x \right) = {1 \over {\sqrt {5x + 4} }}\)

Lời giải chi tiết:

Đặt \(u = \sqrt {5x + 4}  \Rightarrow {u^2} = 5x + 4\) \( \Rightarrow 2udu = 5dx \Rightarrow dx = {{2u.du} \over 5}\)

\( \Rightarrow \int {f\left( x \right)dx}  = \int {\dfrac{1}{u}.\dfrac{{2udu}}{5}}  = \int {\dfrac{2}{5}du} \) \( = \dfrac{2}{5}u + C = \dfrac{2}{5}\sqrt {5x + 4}  + C\)

Cách 2:

\(\int {\dfrac{1}{{\sqrt {5x + 4} }}dx}  = \int {\dfrac{1}{5}.\dfrac{{d\left( {5x + 4} \right)}}{{{{\left( {5x + 4} \right)}^{\dfrac{1}{2}}}}}} \)\( = \int {\dfrac{1}{5}.{{\left( {5x + 4} \right)}^{ - \dfrac{1}{2}}}d\left( {5x + 4} \right)} \) \( = \dfrac{1}{5}.\dfrac{{{{\left( {5x + 4} \right)}^{ - \dfrac{1}{2} + 1}}}}{{ - \dfrac{1}{2} + 1}} + C\) \( = \dfrac{1}{5}.\dfrac{{{{\left( {5x + 4} \right)}^{\dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + C\)  \( = \dfrac{2}{5}{\left( {5x + 4} \right)^{\dfrac{1}{2}}} + C\) \( = \dfrac{2}{5}\sqrt {5x + 4}  + C\)

Cách 3

Đặt \(5x + 4 = u\) \( \Rightarrow 5dx = du \Rightarrow dx = \dfrac{{du}}{5}\)

\( \Rightarrow \int {f\left( x \right)dx}  = \int {\dfrac{1}{{\sqrt u }}.\dfrac{{du}}{5}}  \) \(= \dfrac{2}{5}\int {\dfrac{1}{{2\sqrt u }}du} \) \( = \dfrac{2}{5}\sqrt u  + C = \dfrac{2}{5}\sqrt {5x + 4}  + C\)

LG c

\(f\left( x \right) = x\root 4 \of {1 - {x^2}} \)

Lời giải chi tiết:

Đặt \(u = \root 4 \of {1 - {x^2}}  \) \(\Rightarrow {u^4} = 1 - {x^2}\) \( \Rightarrow 4{u^3}du =  - 2xdx\) \(  \Rightarrow xdx =  - 2{u^3}du\)

\( \Rightarrow \int {f\left( x \right)dx} \)\( = \int { - 2{u^3}.udu}  =  - 2\int {{u^4}du} \) \( =  - 2.\dfrac{{{u^5}}}{5} + C =  - \dfrac{{2{u^5}}}{5} + C\) \( =  - \dfrac{{2{{\left( {\sqrt[4]{{1 - {x^2}}}} \right)}^5}}}{5} + C\)  \( =  - \dfrac{{2\left( {1 - {x^2}} \right)\sqrt[4]{{1 - {x^2}}}}}{5} + C\)

Cách khác:

Đặt \(1 - {x^2} = u\) \( \Rightarrow  - 2xdx = du \Rightarrow xdx =  - \dfrac{{du}}{2}\)

\( \Rightarrow \int {f\left( x \right)dx} \) \( = \int {\sqrt[4]{u}.\left( { - \dfrac{{du}}{2}} \right)} \) \( =  - \dfrac{1}{2}\int {{u^{\dfrac{1}{4}}}du} \) \( =  - \dfrac{1}{2}.\dfrac{{{u^{\dfrac{1}{4} + 1}}}}{{\dfrac{1}{4} + 1}} + C\)\( =  - \dfrac{1}{2}.\dfrac{{{u^{\dfrac{5}{4}}}}}{{\dfrac{5}{4}}} + C =  - \dfrac{2}{5}{u^{\dfrac{5}{4}}} + C\) \( =  - \dfrac{2}{5}\sqrt[4]{{{{\left( {1 - {x^2}} \right)}^5}}} + C\)  \( =  - \dfrac{2}{5}\left( {1 - {x^2}} \right)\sqrt[4]{{1 - {x^2}}} + C\)

LG d

\(f\left( x \right) = {1 \over {\sqrt x {{\left( {1 + \sqrt x } \right)}^2}}}\)

Lời giải chi tiết:

Đặt \(\displaystyle u = 1 + \sqrt x \) \(\displaystyle \Rightarrow du = {{du} \over {2\sqrt x }} \) \(\displaystyle \Rightarrow {{dx} \over {\sqrt x }} = 2du\)

\(\displaystyle \Rightarrow \int {{{dx} \over {\sqrt x {{\left( {1 + \sqrt x } \right)}^2}}}}  \) \(\displaystyle  = \int {{{2u} \over {{u^2}}}}  =  - {2 \over u} + C \) \(\displaystyle =  - {2 \over {1 + \sqrt x }} + C.\)

Loigiaihay.com


Bình chọn:
3.8 trên 6 phiếu

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí